CF963E Circles of Waiting
Circles of Waiting
求一个整点四连通随机游⾛,离原点距离超过R期望步数。R≤50。
带状矩阵法
本质上就是网格图的随机游走。
\]
相关联的变量较少,所以使用Band Matrix即可。时间复杂度 \(O(R^4)\)。
https://blog.csdn.net/lycheng1215/article/details/80180178
貌似这题不写主元系数为0时的操作也是对的。
CO int dx[4]={-1,0,1,0},dy[4]={0,-1,0,1};
int p[4];
CO int N=103,O=51;
int idx[N][N],tot;
pair<int,int> pt[N*N];
CO int M=7845+5;
int a[M][M];
int main(){
int R=read<int>();
int all=0;
for(int i=0;i<=3;++i) all+=read(p[i]);
all=fpow(all,mod-2);
for(int i=0;i<=3;++i) p[i]=mul(p[i],all);
for(int y=-R;y<=R;++y)for(int x=-R;x<=R;++x)
if(x*x+y*y<=R*R) idx[x+O][y+O]=++tot,pt[tot]=make_pair(x+O,y+O);
for(int i=1;i<=tot;++i){
a[i][i]=1,a[i][tot+1]=1;
int x=pt[i].first,y=pt[i].second;
for(int j=0;j<=3;++j)if(idx[x+dx[j]][y+dy[j]])
a[i][idx[x+dx[j]][y+dy[j]]]=mod-p[j];
}
int lim=0;
for(int i=1;i<=tot;++i){
lim=max(lim,idx[pt[i].first][pt[i].second+1]);
int inv=fpow(a[i][i],mod-2);
for(int j=i+1;j<=lim;++j)if(a[j][i]){
int coef=mul(mod-a[j][i],inv);
for(int k=i;k<=lim;++k) a[j][k]=add(a[j][k],mul(coef,a[i][k]));
a[j][tot+1]=add(a[j][tot+1],mul(coef,a[i][tot+1]));
}
}
for(int i=tot;i>=1;--i){
for(int j=i+1;j<=tot;++j)
a[i][tot+1]=add(a[i][tot+1],mod-mul(a[i][j],a[j][tot+1])),a[i][j]=0;
a[i][tot+1]=mul(a[i][tot+1],fpow(a[i][i],mod-2)),a[i][i]=1;
}
printf("%d\n",a[idx[O][O]][tot+1]);
return 0;
}
主元法
可以对每一行最左边的元素设置未知变量。
每个点可以向上下左右走,那么如何转移系数呢?
E_{x,y}=\frac{1}{p_3}(E_{x-1,y}-p_1E_{x-2,y}-p_2E_{x-1,y-1}-p_4E_{x-1,y+1}-1)
\]
所以说系数的转移还可以间接来整。
时间复杂度 \(O(R^3)\)。
CO int N=100+10;
int p[4];
int c[N][N][N];
int a[N][N];
int main(){
int R=read<int>();
int all=0;
for(int i=0;i<=3;++i) all+=read(p[i]);
all=fpow(all,mod-2);
for(int i=0;i<=3;++i) p[i]=mul(p[i],all);
int n=2*R+1;
function<bool(int,int)> check=[R](int x,int y)->bool{
return (x-R-1)*(x-R-1)+(y-R-1)*(y-R-1)<=R*R;
};
for(int x=1;x<=n;++x)for(int y=1;y<=n;++y){
if(!check(x,y)) continue;
if(!check(x-1,y)){
c[x][y][y]=1;
continue;
}
int inv=fpow(p[2],mod-2);
for(int i=1;i<=n+1;++i){
int sum=c[x-1][y][i];
sum=add(sum,mod-mul(p[0],c[x-2][y][i]));
sum=add(sum,mod-mul(p[1],c[x-1][y-1][i]));
sum=add(sum,mod-mul(p[3],c[x-1][y+1][i]));
if(i==n+1) sum=add(sum,mod-1);
c[x][y][i]=mul(sum,inv);
}
}
for(int y=1;y<=n;++y){
int x=sqrt(R*R-(y-R-1)*(y-R-1))+R+1;
for(int i=1;i<=n+1;++i){
int sum=c[x][y][i];
sum=add(sum,mod-mul(p[0],c[x-1][y][i]));
sum=add(sum,mod-mul(p[1],c[x][y-1][i]));
sum=add(sum,mod-mul(p[3],c[x][y+1][i]));
if(i==n+1) sum=add(sum,mod-1);
a[y][i]=sum;
}
a[y][n+1]=mod-a[y][n+1];
}
for(int i=1;i<=n;++i){
int p=i;
for(int j=i;j<=n;++j)
if(a[j][i]) {p=j;break;}
if(p!=i) swap(a[p],a[i]);
int inv=fpow(a[i][i],mod-2);
for(int j=1;j<=n;++j)if(j!=i){
int coef=mul(mod-a[j][i],inv);
for(int k=i;k<=n+1;++k) a[j][k]=add(a[j][k],mul(coef,a[i][k]));
}
}
for(int i=1;i<=n;++i)
a[i][n+1]=mul(a[i][n+1],fpow(a[i][i],mod-2)),a[i][i]=1;
int ans=c[R+1][R+1][n+1];
for(int i=1;i<=n;++i) ans=add(ans,mul(c[R+1][R+1][i],a[i][n+1]));
printf("%d\n",ans);
return 0;
}
CF963E Circles of Waiting的更多相关文章
- [CF963E]Circles of Waiting[高斯消元网格图优化+期望]
题意 你初始位于 \((0,0)\) ,每次向上下左右四个方向走一步有确定的概率,问你什么时候可以走到 以 \((0,0)\)为圆心,\(R\) 为半径的圆外. \(R\le 50\) 分析 暴力 \ ...
- Circles of Waiting
题目传送门 很容易列出期望的方程,高斯消元搞一波但是常规消元复杂度是$O(r^6)$的考虑从左到右从上到下编号然后按编号从小到大消元假设黄点是已经消元的点,那么消下一个点的时候,只有绿点的方程中该项系 ...
- Tinkoff Internship Warmup Round 2018 and Codeforces Round #475 (Div. 1)
A. Alternating Sum 就是个等比数列,特判公比为 $1$ 的情况即可. #include <bits/stdc++.h> using namespace std; ; ; ...
- the user operation is waiting
eclipse在编辑完代码保存的时候,弹出一个进度框,等N长时间,标题是"user operation is waiting",里面显示的是building workspace的进 ...
- Centos:Another app is currently holding the yum lock; waiting for it to exit...
Another app is currently holding the yum lock; waiting for it to exit... 另一个应用程序是:PackageKit 内存: 27 ...
- Database 'xxxx' is being recovered. Waiting until recovery is finished.
巡检发现一个SQL SERVER Express 2005数据库备份时出现下面错误: Database 'xxxx' is being recovered. Waiting until recover ...
- 关于eclipse保存代码很慢,提示the user operation is waiting的问题
关于eclipse保存代码很慢,提示the user operation is waiting的问题 首先 去掉 project - build Automaticlly 然后 project-> ...
- android模拟器停在Waiting for HOME解决方案
直接打开Android SDK Manager然后再从Android SDK Manager里的tools打开Android AVD Manager,删除掉在Eclipse里创建的模拟器.并在新建一个 ...
- ORA-04021 timeout occurred while waiting to lock object
用户要求删除一个数据库的用户 GREENPASS,在删除的过程中,报错如下: drop user GREENPASS * ERROR at line 1: ORA-04021: timeout occ ...
随机推荐
- 牛客网NOIP赛前集训营-提高组(第六场) C-树
题目描述 有一棵有 n 个结点的树,每条边有编号为 0,1,2 的三种颜色,刚开始每条边颜色都为 0 . 现在有 3 种操作: \(1\ x\ y\ col\) ,表示询问 \(x\) 到 \(y\) ...
- phpstorm 开发php入门
环境:ubuntu phpstorm apache mysql 一.安装软件 安装apache服务器 https://i.cnblogs.com/EditPosts.aspx?postid=1113 ...
- java资料搜索网站
http://yun.java1234.com/ 盘多多 B站 一个集成了很多springboot功能的地址 https://gitbub.com/runzhenghengbin/SpringBoot ...
- JS中arguments对象
与其他程序设计语言不同,ECMAScript 不会验证传递给函数的参数个数是否等于函数定义的参数个数. 开发者定义的函数都可以接受任意个数的参数而无需跟定义的函数相匹配(根据 Netscape 的文档 ...
- Delphi 如何在程序中执行动态生成的Delphi代码
如何在程序中执行动态生成的Delphi代码 经常发现有人提这类问题,或者提问内容最后归结成这种问题 前些阵子有位高手写了一个“执行动态生成的代码”,这是真正的高手,我没那种功力,我只会投机取巧. 这里 ...
- 2019.6.1 模拟赛——[ 费用流 ][ 数位DP ][ 计算几何 ]
第一题:http://codeforces.com/contest/1061/problem/E 把点集分成不相交的,然后跑费用流即可.然而错了一个点. #include<cstdio> ...
- NOIP 历年试题大致考点总结
总的来说,水平还不够-- 要努力了! NOIP2012 D1T1 模拟, 字符串 D1T2 贪心, 数学 (推导贪心策略), 高精度 D1T3 unsolved 开车旅行 倍增 D2T1 解线性模方程 ...
- 左手Mongodb右手Redis 通过python连接mongodb
首先需要安装第三方包pymongo pip install pymongodb """ 通过python连接mongodb数据库 首先需要初始化数据库连接 "& ...
- 后台处理json数据
InputStream in = request.getInputStream(); BufferedReader br = new BufferedReader(new InputStreamRea ...
- SharePoint 2013中PerformancePoint仪表板设计器连接Analysis Services 2012的问题
在SharePoint 2013的PerformancePoint仪表板设计器在创建链接到AnalysisServices 2012的数据链接的时候,数据库列表无法获取服务器上的数据库.这个问题挺让人 ...