h1 { margin-bottom: 0.21cm }
h1.western { font-family: "Liberation Sans", sans-serif; font-size: 18pt }
h1.cjk { font-family: "Noto Sans CJK SC Regular"; font-size: 18pt }
h1.ctl { font-family: "Noto Sans CJK SC Regular"; font-size: 18pt }
p { margin-bottom: 0.25cm; line-height: 120% }

牛顿插值法

一、背景引入

相信朋友们,开了拉格朗日插值法后会被数学家的思维所折服,但是我想说有了拉格朗日插值法还不够,因为我们每次增加一个点都得重算所有插值基底函数,这样会增加计算量,下面我们引入牛顿插值法,这种插值法,添加一个插值结点我们只要做很小的变动便可以得到新的插值多项式。

二、理论推导

-均差的定义:

(一阶均差)

二阶均差为一阶均差再求均差。(显然是递推的)

一般地,函数f 的k阶均差定义为:

由均差的性质可以推导出:

k+1阶均差:

p { margin-bottom: 0.25cm; line-height: 120% }

(具体性质看:《数值分析:第5版》 page:30)

由均差的递推性,我们可以用以下表来求:

求表的公式:

table[i][j] = (table[i - 1][j] - table[i - 1][j - 1]) / (x[j] - x[j - i]);

p { margin-bottom: 0.25cm; line-height: 120% }

其中P(x) 为插值多项式,而R(x) 为插值余项。

所以p(x):

(由于图片问题此处P(x) 同N(x))

p { margin-bottom: 0.25cm; line-height: 120% }

三、代码实现

由以上推导可知,求牛顿插值多项式子主要就是求均差。

均差可由上表递推求得:

求表的公式:

table[i][j] = (table[i - 1][j] - table[i - 1][j - 1]) / (x[j] - x[j - i]);

#include <iostream>
using namespace std;
#include <vector>
inline double newton_solution(double x[], double y[], int n, double num, int newton_time)
{
    vector<vector<);
    ; i <= n; i++) {
        table[i].resize(n + );
    }
    ; i <= n; i++) table[][i] = y[i];
    ; i <= n; i++) {
        for (int j = i; j <= n; j++) {
            table[i][j] = (table[i - ][j] - table[i - ][j - ]) / (x[j] - x[j - i]);
        }
    }

    double res = 0.0;
    ; i <= newton_time; i++) {
        double temp = table[i][i];
        ; j < i; j++) {
            temp *= num - x[j];
        }
        res += temp;
    }

    return res;

}
int main(int argc, char const *argv[])
{
    ;
    cout << "插值节点个数-1:";
    cin >> n;
    ], y[n + ];
    cout << "\n请输入x[i]:";
    ; i <= n; i++) {
        cin >> x[i];
    }
    cout << "\n请输入y[i]:";
    ; i <= n; i++) {
        cin >> y[i];
    }
    ;
    cout << "\n请输入要求的点的x:";
    cin >> num;
    cout << "\n请输入所求的插值多项式次数:";
    ;
    cin >> newton_time;
    cout << newton_solution(x, y, n, num, newton_time) << endl;
    ;

牛顿插值法及其C++实现的更多相关文章

  1. 牛顿插值法——用Python进行数值计算

    拉格朗日插值法的最大毛病就是每次引入一个新的插值节点,基函数都要发生变化,这在一些实际生产环境中是不合适的,有时候会不断的有新的测量数据加入插值节点集, 因此,通过寻找n个插值节点构造的的插值函数与n ...

  2. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  3. 牛顿插值法(c++)【转载】

    摘自<c++和面向对象数值计算>,代码简洁明快,采用模板函数,通用性增强,牛顿差分合理利用存储空间,采用Horner算法(又称秦九韶算法)提高精度,减少时间复杂度,高!确实是高!对其中代码 ...

  4. 差分形式的牛顿插值法(c++)

    本程序对cosx函数进行插值,取步长为0.1,因此x的值为0.00,0.10,0.20,0.30,对应的y值为cos(0.00),cos(0.10),cos(0.20),cos(0.30),其实本程序 ...

  5. 牛顿插值法(c++)

    X Y 0.40 0.41075 0.55 0.57815 0.65 0.69675 0.80 0.88811 0.90 1.02652 1.05 1.25382 #include using nam ...

  6. CPP,MATLAB实现牛顿插值

    牛顿插值法的原理,在维基百科上不太全面,具体可以参考这篇文章.同样贴出,楼主作为初学者认为好理解的代码. function p=Newton1(x1,y,x2) %p为多项式估计出的插值 syms x ...

  7. 埃尔米特插值问题——用Python进行数值计算

    当插值的要求涉及到对插值函数导数的要求时,普通插值问题就变为埃尔米特插值问题.拉格朗日插值和牛顿插值的要求较低,只需要插值函数的函数值在插值点与被插函数的值相等,以此来使得在其它非插值节点插值函数的值 ...

  8. 风景区的面积及道路状况分析问题 test

    参考文献:   https://wenku.baidu.com/view/b6aed86baf1ffc4ffe47ac92.html #include <bits/stdc++.h> us ...

  9. ORACLE SQL 实现IRR的计算

    一.IRR计算的原理: 内部收益率(Internal Rate of Return (IRR)),就是资金流入现值总额与资金流出现值总额相等.净现值等于零时的折现率. 用公式 标识:-200+[30/ ...

随机推荐

  1. 201521123057 《Java程序设计》第3周学习总结

    1. 本周学习总结 2. 书面作业 1.代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; p ...

  2. Java FX入门

    本文主要借用JavaFX 8 教程来引导同学完成Java FX的学习. 虽然java在GUI方面并无优势,但感兴趣的同学使用Java还是可以做出一些跨平台的小工具.底下是使用Java FX做出的一个界 ...

  3. sublime主题安装

    网上发现与之前最相近的两款皮肤分别是Theme – Soda与Flatland.这里就记录一下安装与使用方法. 方法一:手动下载安装: 1.下载安装SublimeText2,这个我就不说了.网上的版本 ...

  4. 201521123022 《Java程序设计》 第九周学习总结

    1.本章学习总结 2. 书面作业 本次PTA作业题集异常 1.常用异常 题目5-1 Q1.1 截图你的提交结果(出现学号) Q1.2 自己以前编写的代码中经常出现什么异常.需要捕获吗(为什么)?应如何 ...

  5. 201521123116 《java程序设计》第十二周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 书面作业 Q1.字符流与文本文件:使用 PrintWriter(写),BufferedReader(读) ...

  6. Ajax练习题

    1.使用Ajax跳转处理页面连接数据库,完成下拉列表 首页: <body> <select id="sel">    </select> < ...

  7. Python爬虫1-----------placekitten 入门

    常用的urllib库有三个类:request,parse,error,request主要完成对url的请求,如proxy,opener,urlopen,parse主要完成对html的解析,error负 ...

  8. Apache Spark 2.2.0 中文文档 - 概述 | ApacheCN

    Spark 概述 Apache Spark 是一个快速的, 多用途的集群计算系统. 它提供了 Java, Scala, Python 和 R 的高级 API,以及一个支持通用的执行图计算的优化过的引擎 ...

  9. Java 异常机制

    Java 异常机制 什么是异常 异常指不期而至的各种状况,如:文件找不到.网络连接失败.非法参数等.异常是一个事件,它发生在程序运行期间,干扰了正常的指令流程 为什么要有异常 什么出错了 哪里出错了 ...

  10. WebSocket In ASP.NET Core(二)

    WebSocket In ASP.NET Core(二) Server in ASP.NET-Core DI in ASP.NET-Core Routing in ASP.NET-Core Error ...