51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4
题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50000\)
等幂求和
多项式求逆元\(O(mlogm)\)预处理伯努利数,然后可以\(O(m)\)回答
因为是任意模数,所以要用拆系数fft
拆系数fft+多项式求逆元,写的爽死了
具体内容可能会写学习笔记
注意:
- 多项式求逆元里拆系数,不能只更新 .x= ,这样的话y还保留以前的值就错了
- 因为使用指数型生成函数预处理伯努利数,所以最后要乘个阶乘
不知道为什么我的代码好快啊,500ms rank1
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<17) + 5, mo = 1e9+7, P = 1e9+7;
const double PI = acos(-1.0);
inline ll read(){
char c=getchar(); ll x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
struct meow{
double x, y;
meow(double a=0, double b=0):x(a), y(b){}
};
meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
meow operator *(meow a, meow b) {return meow(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd;
namespace fft {
int rev[N], maxlen = 1<<17;
cd omega[N], omegaInv[N];
void init() {
for(int i=0; i<maxlen; i++) {
omega[i] = cd(cos(2*PI/maxlen*i), sin(2*PI/maxlen*i));
omegaInv[i] = conj(omega[i]);
}
}
void dft(cd *a, int n, int flag) {
cd *w = flag==1 ? omega : omegaInv;
for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
for(cd *p = a; p != a+n; p += l)
for(int k=0; k<m; k++) {
cd t = w[maxlen/l*k] * p[k+m];
p[k+m] = p[k] - t;
p[k] = p[k] + t;
}
}
if(flag == -1) for(int i=0; i<n; i++) a[i].x /= n;
}
cd a[N], b[N], c[N], d[N]; int z[N];
void inverse(int *x, int *y, int l) {
if(l == 1) {y[0] = 1; return;}
inverse(x, y, (l+1)>>1);
int n = 1, k = 0; while(n < l<<1) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
for(int i=0; i<l; i++) a[i] = cd(y[i]>>15), b[i] = cd(y[i]&32767);
for(int i=l; i<n; i++) a[i] = b[i] = cd();
dft(a, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) {
cd _a = a[i], _b = b[i];
a[i] = _a * _a;
b[i] = _a * _b + _a * _b;
c[i] = _b * _b;
}
dft(a, n, -1); dft(b, n, -1); dft(c, n, -1);
for(int i=0; i<l; i++)
z[i] = ( (ll(a[i].x + 0.5) %mo << 30) %mo + (ll(b[i].x + 0.5) %mo << 15) %mo + ll(c[i].x + 0.5) %mo) %mo;
for(int i=0; i<l; i++)
a[i] = cd(x[i]>>15), b[i] = cd(x[i]&32767), c[i] = cd(z[i]>>15), d[i] = cd(z[i]&32767);
for(int i=l; i<n; i++) a[i] = b[i] = c[i] = d[i] = cd();
dft(a, n, 1); dft(b, n, 1); dft(c, n, 1); dft(d, n, 1);
for(int i=0; i<n; i++) {
cd _a = a[i], _b = b[i], _c = c[i], _d = d[i];
a[i] = _a * _c;
b[i] = _a * _d + _b * _c;
c[i] = _b * _d;
}
dft(a, n, -1); dft(b, n, -1); dft(c, n, -1);
for(int i=0; i<l; i++) {
ll t = ( (ll(a[i].x + 0.5) %mo << 30) %mo + (ll(b[i].x + 0.5) %mo << 15) %mo + ll(c[i].x + 0.5) %mo) %mo;
y[i] = (y[i] * 2 %mo - t + mo) %mo;
}
}
}
int n, m, a[N], b[N];
ll inv[N], fac[N], facInv[N], mi[N];
inline ll C(int n, int m) {return fac[n] * facInv[m] %mo * facInv[n-m] %mo;}
inline ll cal(int n, int m) {
ll ans = 0;
mi[0] = 1; for(int i=1; i<=m+1; i++) mi[i] = mi[i-1] * n %mo;
for(int i=0; i<=m; i++) if(b[i]) (ans += C(m+1, i) * b[i] %mo * mi[m+1-i] %mo) %= mo;
ans = (ans * inv[m+1]) %mo;
return ans;
}
int main() {
freopen("in", "r", stdin);
n = 50001;
inv[1] = fac[0] = facInv[0] = 1;
for(int i=1; i<=n; i++) {
if(i != 1) inv[i] = (P - P/i) * inv[P%i] %P;
fac[i] = fac[i-1] * i %P;
facInv[i] = facInv[i-1] * inv[i] %P;
}
fft::init();
for(int i=0; i<n; i++) a[i] = facInv[i+1];
fft::inverse(a, b, n);
for(int i=0; i<n; i++) b[i] = b[i] * fac[i] %mo;
int T=read();
while(T--) {
n = (read()+1) %mo; m=read();
printf("%lld\n", cal(n, m));
}
}
51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]的更多相关文章
- 51nod 1258 序列求和 V4
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4 基准时间限制:8 秒 空间限制:131 ...
- BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...
- 【51Nod1258】序列求和V4(FFT)
[51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间 ...
- 51nod 1172 Partial Sums V2 卡精度的任意模数FFT
卡精度的任意模数fft模板题……这道题随便写个表就能看出规律来(或者说考虑一下实际意义),反正拿到这题之后,很快就会发现他是任意模数fft模板题.然后我就去网上抄了一下板子……我打的是最土的任意模数f ...
- 【集训队作业2018】取名字太难了 任意模数FFT
题目大意 求多项式 \(\prod_{i=1}^n(x+i)\) 的系数在模 \(p\) 意义下的分布,对 \(998244353\) 取模. \(p\) 为质数. \(n\leq {10}^{18} ...
- 任意模数FFT
任意模数FFT 这是一个神奇的魔法,但是和往常一样,在这之前,先 \(\texttt{orz}\ \color{orange}{\texttt{matthew99}}\) 问题描述 给定 2 个多项式 ...
- 51nod 1228、1258 序列求和
这里一次讲两题...貌似都是板子? 所以两题其实可以一起做 [雾 noteskey 总之就是伯努利数的两道入门题啦,就是第二道有点鬼畜了,居然要任意模数的!(好吧是 1e9+7 但也没什么区别了) 伯 ...
- 拆系数FFT(任意模数FFT)
拆系数FFT 对于任意模数 \(mod\) 设\(m=\sqrt {mod}\) 把多项式\(A(x)\)和\(B(x)\)的系数都拆成\(a\times m+b\)的形式,时\(a, b\)都小于\ ...
- 51nod1258 序列求和 V4(伯努利数+多项式求逆)
题面 传送门 题解 不知道伯努利数是什么的可以先去看看这篇文章 多项式求逆预处理伯努利数就行 因为这里模数感人,所以得用\(MTT\) //minamoto #include<bits/stdc ...
随机推荐
- UNITY VR 视频/图片 开发心得(一)
现在的VR似乎没有之前那么火热了,于是乎我居然开始了VR征程... 说起VR,对于没有接受过相关知识的人来说可能看起来比较高大上,但是VR的原理却没有想象中那么复杂.总的来说,VR之所以能够产生立体感 ...
- centos6.5下redis安装步骤总结
1.首先下载一个版本 我用的是3.2.9 解压:tar -zxvf /redis-stable.tar.gz 在/usr/local/新建redis文件夹 然后把解压好的文件夹移动到/usr/loca ...
- 快学Scala之特质
一个Scala类可以继承多个特质(trait), 特质可能会要求使用它们的类支持某个特定特性, 与Java接口不同, Scala特质可以给出这些特质的缺省实现. 要点如下: Scala中类只能继承一个 ...
- Hibernate 中Hql 查询中间表的用法
案例简述: 项目中存在User 用户表 和 Role 角色表 它们之间是多对多的关系 在User类定义中 使用hibernate注解 //角色列表 @ManyToMany(targetEntity = ...
- MySQL-FAQ
1.ERROR 1130: Host 'xxx' is not allowed to connect to this MySQL server远程连接mysql服务器报上述错误.解决方法:1.改表法. ...
- Django学习(一)---基本配置及创建项目、应用
安装:在Django官网下载最新版Django然后通过pip安装即可 一.创建项目 进入文件夹,打开cmd窗口,输入django-admin startproject myblog(项目名) 二.创建 ...
- webpack热更新问题和antd design字体图标库扩展
标题也不知道怎么写好,真是尴尬.不过话说回来,距离上一次写文快两个月了,最近有点忙,一直在开发新项目, 今天刚刚闲下来,项目准备提测.借这个功夫写点东西,把新项目上学到的一些好的干活分享一下,以便之后 ...
- 学习java窗口基本操作时无聊写的
学习java窗口基本操作时无聊写的 就当记录 代码如下: package day08; import java.awt.BorderLayout;import java.awt.Color;impor ...
- Jenkins: 执行 PowerShell 命令
Jenkins 默认是不支持执行 PowerShell 命令的,需要安装插件才能完成这样的任务.本文将介绍 Jenkins PoserShell 插件的基本用法和常见问题. 安装 PowerShell ...
- [C++ Calculator 项目] 基础运算实现
Calculator V1.1 注:这是C++计算器项目第二部分-运算 [基于初始部分增改而得] 源文件已上传至github 主要问题: Ⅰ.运算实现的问题在于( ) + - * /的优先级的处理,以 ...