题目描述

  给你一个\(n\times m\)的棋盘,每次随机在棋盘上放一个国际象棋中的车,不能和以前放的重叠。每个车可以控制当前行和当前列。当所有行和所有列都被控制时结束游戏。问你结束时期望放了多少个车。

  注意:结束的条件是所有行和所有列都被控制,而不是所有格子都被控制。

  \(n,m\leq 50\)

题解

  简单DP

  \(f_{i,j,k}\)表示放了\(k\)个车后控制了\(i\)行\(j\)列的概率

\[f_{i,j,k}=\frac{f_{i,j,k-1}\times(ij-(k-1))+f_{i,j-1,k-1}\times i(m-j+1)+f_{i-1,j,k-1}\times j(n-i+1)+f_{i-1,j-1,k-1}\times(n-i+1)(m-j+1)}{nm-k+1}
\]

  答案是

\[\sum_{i=1}^{nm}i(f_{n,m,i}-f_{n,m,i-1})
\]

  弄个滚动数组搞一下

  时间复杂度:\(O(n^4)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
double f[2][60][60];
void solve()
{
double ans=0;
int n,m;
scanf("%d%d",&n,&m);
memset(f,0,sizeof f);
int i,j,k;
f[0][0][0]=1;
int t=0;
for(k=1;k<=n*m;k++)
{
t^=1;
double now=1./(n*m-k+1);
memset(f[t],0,sizeof f[t]);
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
f[t][i][j]=(f[t^1][i][j]*(i*j-k+1)+f[t^1][i-1][j]*(n-i+1)*j+f[t^1][i][j-1]*i*(m-j+1)+f[t^1][i-1][j-1]*(n-i+1)*(m-j+1))*now;
ans+=k*(f[t][n][m]-f[t^1][n][m]);
}
printf("%.10lf\n",ans);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
solve();
return 0;
}

【XSY1594】棋盘控制 概率DP的更多相关文章

  1. Domination(概率DP)

    Domination 题目链接:https://odzkskevi.qnssl.com/9713ae1d3ff2cc043442f25e9a86814c?v=1531624384 Edward is ...

  2. zoj 3822 Domination (概率dp 天数期望)

    题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...

  3. POJ-3744 Scout YYF I 概率DP

    题目链接:http://poj.org/problem?id=3744 简单的概率DP,分段处理,遇到mine特殊处理.f[i]=f[i-1]*p+f[i-2]*(1-p),i!=w+1,w为mine ...

  4. POJ2151Check the difficulty of problems 概率DP

    概率DP,还是有点恶心的哈,这道题目真是绕,问你T个队伍.m个题目.每一个队伍做出哪道题的概率都给了.冠军队伍至少也解除n道题目,全部队伍都要出题,问你概率为多少? 一開始感觉是个二维的,然后推啊推啊 ...

  5. zoj 3822 Domination 概率dp 2014牡丹江站D题

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  6. 概率DP(放棋子)Domination

    题意:https://zoj.pintia.cn/problem-sets/91827364500/problems/91827369874 给你n*m的棋盘,我们定义放满棋盘是:任意一行一列至少有一 ...

  7. ZOJ 3822 ( 2014牡丹江区域赛D题) (概率dp)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 题意:每天往n*m的棋盘上放一颗棋子,求多少天能将棋盘的每行每列都至少有 ...

  8. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  9. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

随机推荐

  1. 爬虫(二)之scrapy框架

    01-scrapy介绍 02-项目的目录结构: scrapy.cfg 项目的主配置信息.(真正爬虫相关的配置信息在settings.py 文件中) items.py 设置数据存储模板,用于结构化数据, ...

  2. openstack-KVM安装与使用

    一.KVM安装 1.安装条件 VT-x BIOS Intel9R) Virtualization Tech [Enabled] cat /proc/cpuinfo | grep -e vmx -e n ...

  3. MySQL的binlog及关闭方法

    如何关闭MySQL日志,删除mysql-bin.0000*日志文件 - VPS侦探https://www.vpser.net/manage/delete-mysql-mysql-bin-0000-lo ...

  4. hive条件函数

    case相当于if,when相当于=:then是条件满足的结论.否则实行else后语句,一end结束

  5. Laravel 出现 No application encryption key has been specified.

    若文件根目录下没有 .env 1..env.example 改名使用命令 copy 修改为 .env 2.使用命令 php artisan key:generate  获取密码,自动保存到 .env3 ...

  6. GitHub创建仓库,并与git本地仓库关联

    登录后头像右上角点击: 起名再create 后 会跳转到下面页面: 先在git上复制执行第一条指令,创建一个readme文档 然后再用第二条初始化仓库 第三步将readme文档添加至暂存区 然后提交一 ...

  7. Unable to handle kernel paging request at virtual address

    1.Unable to handle kernel paging request at virtual address 00000000 =====>越出内核地址空间范围,原因是由于使用空NUL ...

  8. 关于WPF中Popup中的一些用法的总结

    Popup控件是一个常用的非常有用的控件,顾明思义就是弹出式控件,首先我们来看看MSDN对它的解释吧,表示具有内容的弹出窗口,这个是非常重要的控件,我们看看它的继承关系吧: System.Object ...

  9. 从Oracle数据库中查询前几个月数据时需要注意的一些问题

    在最近的一个项目中,有一个需求就是要查询数据库中前几个月的历史数据,但是由于自己考虑不全面造成了程序的bug,现在将这一块好好作一个总结,希望以后不再犯这种很低级的错误,首先贴出查询中用到的一个子函数 ...

  10. python数学第三天【方向导数】

    1.方向导数 2. 梯度 3. 凸函数: 4. 凸函数的判定 5. 凸函数的一般表示 6. 凸性质的应用