题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12)

那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到一个临时柱子上,然后将1个最大圆盘移动到目标的主子,最后再将n-1个圆盘移动到目标柱子。

为什么是n-1和1的组合呢,因为当你将n-i个圆盘移动到一个临时柱子上的时候,你会发现只靠两个柱子最多能移动1个圆盘。所以这个i=1

如果推到到4个柱子的汉诺塔,f[n] = min(f[n],2*f[n-i]+d[i]). (1 <= i < n),就是把n-i个圆盘移动到临时的一个柱子上,然后把剩下的 i 个圆盘在三个柱子中移动到目标柱子,最后把n-i移动会目标柱子

 #include<iostream>
#include<string.h>
#include<cstdio>
using namespace std; int d[];
int f[];
int main()
{
d[] = ;
for(int i=;i<=;i++)d[i] = (d[i-]<<)+;
memset(f,0x3f,sizeof(f));
f[] = ;
for(int i=;i<=;i++)
{
for(int j=;j<i;j++)
{
f[i] = min(f[i],(f[j]<<)+d[i-j]);
}
}
for(int i=;i<=;i++)
{
printf("%d\n",f[i]);
}
}

Strange Towers of Hanoi POJ - 1958(递推)的更多相关文章

  1. POJ1958 Strange Towers of Hanoi [递推]

    题目传送门 Strange Towers of Hanoi Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3117   Ac ...

  2. POJ 1958 Strange Towers of Hanoi 解题报告

    Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...

  3. POJ 1958 Strange Towers of Hanoi

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...

  4. POJ-1958 Strange Towers of Hanoi(线性动规)

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...

  5. poj1958——Strange Towers of Hanoi

    The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...

  6. poj1958 strange towers of hanoi

    说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...

  7. 放苹果 POJ - 1664 递推

    把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. Input 第一行是测试数据的数目t(0 <= t < ...

  8. 【POJ 1958】 Strange Towers of Hanoi

    [题目链接] http://poj.org/problem?id=1958 [算法] 先考虑三个塔的情况,g[i]表示在三塔情况下的移动步数,则g[i] = g[i-1] * 2 + 1 再考虑四个塔 ...

  9. POJ1958:Strange Towers of Hanoi

    我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...

随机推荐

  1. VMware虚拟机安装Linux系统centos7(一)

    1.安装虚拟机(自行百度) 2.编辑虚拟机设置 光驱设置,镜像选择:(也可设置2核2G,基于自己计算机选择!) 3.点击开启此虚拟机(上下键选择安装,回车) 4.选择语言 5.设置 如果想安装图形化界 ...

  2. restful中的分页

    普通分页 普通分页类似于Django中的分页 源码 class PageNumberPagination(BasePagination): """ A simple pa ...

  3. 配置 Confluence 6 安全的最佳实践

    让一个系统能够变得更加坚固的最好办法是将系统独立出来.请参考你公司的安全管理策略和相关人员来找到你公司应该采用何种安全策略.这里有很多事情需要我们考虑,例如考虑如何安装我们的操作系统,应用服务器,数据 ...

  4. 【VBA】数组定义时,括号内的数值n为最大下标,其长度为n+1

    定义数组 dim arr(9) as integer注意这是数组的长度为10,而9指的是最大下标值. 所以在redim和赋值的时候要特别小心,防止错位.

  5. LeetCode(91):解码方法

    Medium! 题目描述: 一条包含字母 A-Z 的消息通过以下方式进行了编码: 'A' -> 1 'B' -> 2 ... 'Z' -> 26 给定一个只包含数字的非空字符串,请计 ...

  6. hdu4612 卡cin e-DCC缩点

    /* 给定无向图,求加入一条边后最少剩下多少桥 */ #include<bits/stdc++.h> using namespace std; #define maxn 200005 #d ...

  7. node.js 框架express关于报错页面的配置

    1.声明报错的方法,以及相对应的页面 //把数据库的调用方法配置到请求中 server.use((req, res, next) => { //把数据库存入req中 req.db = db; / ...

  8. Nginx详解四:Nginx基础篇之目录和配置语法

    一.安装目录 命令:rpm -ql nginx 二.编译参数 命令:nginx -V 三.Nginx基本配置语法 修改主配置文件 当Nginx读配置文件读到include /etc/nginx/con ...

  9. Scrapy 框架 安装

    Scrapy 框架 Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,用途非常广泛. 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页 ...

  10. 爬取文件时,对已经操作过的URL进行过滤

    爬取文件时,对已经操作过的URL进行过滤 1.创建过滤规则文件filter.py在spiders同级目录 class RepeatUrl: def __init__(self): self.visit ...