After an uphill battle, General Li won a great victory. Now the head of state decide to reward him with honor and treasures for his great exploit.

One of these treasures is a necklace made up of 26 different kinds
of gemstones, and the length of the necklace is n. (That is to say: n
gemstones are stringed together to constitute this necklace, and each of
these gemstones belongs to only one of the 26 kinds.)

In accordance with the classical view, a necklace is valuable if
and only if it is a palindrome - the necklace looks the same in either
direction. However, the necklace we mentioned above may not a palindrome
at the beginning. So the head of state decide to cut the necklace into
two part, and then give both of them to General Li.

All gemstones of the same kind has the same value (may be positive
or negative because of their quality - some kinds are beautiful while
some others may looks just like normal stones). A necklace that is
palindrom has value equal to the sum of its gemstones' value. while a
necklace that is not palindrom has value zero.

Now the problem is: how to cut the given necklace so that the sum of the two necklaces's value is greatest. Output this value.

InputThe first line of input is a single integer T (1 ≤ T ≤ 10) -
the number of test cases. The description of these test cases follows.

For each test case, the first line is 26 integers: v
1, v
2, ..., v
26 (-100 ≤ v
i ≤ 100, 1 ≤ i ≤ 26), represent the value of gemstones of each kind.

The second line of each test case is a string made up of charactor
'a' to 'z'. representing the necklace. Different charactor representing
different kinds of gemstones, and the value of 'a' is v
1, the value of 'b' is v
2, ..., and so on. The length of the string is no more than 500000.

OutputOutput a single Integer: the maximum value General Li can get from the necklace.Sample Input

2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
aba
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
acacac

Sample Output

1
6 题意是给出26个字母的value,然后给出一个字符串,把字符串分成两段,每段不为空,对于每段的value,如果字符串是回文就是各个字符value和,如果不是则为0,求最大value和。
这里用kmp算法协助判断回文串,首先判断s的前缀,把s反转加到s后面,变换后的s本身就是一个回文串了,然后一层一层往里找回文串,这样判断的最长相同前缀和后缀一定是回文串,因为他和自己反转后相同啊(回文串从中间分开,后半段是前半段的反转)。
由于s的长度翻倍了,所以对于切割的部位,应该原s串内,即在slen内,这里sum_value记录前缀是回文串的位置的sum(value前缀和),然后把原s反转一下,接下来就是找后缀了,同样的过程,只不过切割的位置不同,如果某个后缀是回文,切割的位置是 slen - 后缀位置(函数中flag为1的情况)。 代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm> using namespace std;
char s[];///字符串
int Next[];
int sum[];///value前缀和
int value[],slen;
int sum_value[];///记录从某位置切开后的value总和
int ans;
void getNext() {///确立Next数组
Next[] = -;
int len = slen * ;
int j = -,i = ;
while(i < len) {
if(j == - || s[i] == s[j]) Next[++ i] = ++ j;
else j = Next[j];
}
}
void check(int flag){
sum[] = ;
for(int i = ;i < slen;i ++)///计算前缀和
sum[i + ] = sum[i] + value[s[i] - 'a'];
reverse_copy(s,s + slen,s + slen);///把s反转添加到s后面
getNext();///确立此时的Next数组
int len = slen * ;
while(len) {
if(len < slen) {
int cut = len;
if(flag) cut = slen - len;
sum_value[cut] += sum[len];
ans = max(ans,sum_value[cut]);
}
len = Next[len];
}
}
int main() {
int T;
scanf("%d",&T);
while(T --) {
for(int i = ;i < ;i ++)
scanf("%d",&value[i]);
scanf("%s",s);///读入s
slen = strlen(s);
memset(sum_value,,sizeof(sum_value));
ans = ;
check();
reverse(s,s + slen);///反转一下
check();
printf("%d\n",ans);
}
}

先计算前缀,sumval[i]就代表从i后切开的value总和,manacher算法可以求得所有的回文子串,如果回文串是前缀,便在回文串长度下标对应位置加上前缀和,如果是后缀,便在后缀的前一位对应位置加上后缀的value和,如此找寻最大值。

代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#define MAX 500000
using namespace std;
int v[],sum[MAX + ];
char t[MAX * + ] = {'@','#'};
int p[MAX * + ];
int sumval[MAX + ];
int manacher(char *s,int len) {
int c = ,ans = ;
for(int i = ;i < len;i ++) {
t[c ++] = s[i];
t[c ++] = '#';
}
int rp = ,rrp = ;
for(int i = ;i < c;i ++) {
p[i] = i < rrp ? min(p[rp - (i - rp)],rrp - i) : ;
while(t[i + p[i]] == t[i - p[i]]) {
p[i] ++;
}
if(i - p[i] == ) sumval[(i + p[i] - ) / ] += sum[(i + p[i] - ) / ];
else if(i + p[i] == len * + ) sumval[(i - p[i]) / ] += sum[len] - sum[(i - p[i]) / ];
if(rrp < i + p[i]) {
rrp = i + p[i];
rp = i;
}
}
for(int i = ;i < len;i ++) {
ans = max(ans,sumval[i]);
}
return ans;
}
int main() {
int t;
char s[MAX + ];
scanf("%d",&t);
while(t --) {
for(int i = ;i < ;i ++) {
scanf("%d",&v[i]);
}
scanf("%s",s);
int len = strlen(s);
for(int i = ;i <= len;i ++) {
sum[i] = sum[i - ] + v[s[i - ] - 'a'];
sumval[i] = ;
}
printf("%d\n",manacher(s,len));
}
}

hdu 3613 Best Reward的更多相关文章

  1. HDU 3613 Best Reward 正反两次扩展KMP

    题目来源:HDU 3613 Best Reward 题意:每一个字母相应一个权值 将给你的字符串分成两部分 假设一部分是回文 这部分的值就是每一个字母的权值之和 求一种分法使得2部分的和最大 思路:考 ...

  2. HDU - 3613 Best Reward(manacher或拓展kmp)

    传送门:HDU - 3613 题意:给出26个字母的价值,然后给你一个字符串,把它分成两个字符串,字符串是回文串才算价值,求价值最大是多少. 题解:这个题可以用马拉车,也可以用拓展kmp. ①Mana ...

  3. 扩展KMP --- HDU 3613 Best Reward

    Best Reward Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=3613 Mean: 给你一个字符串,每个字符都有一个权 ...

  4. HDU 3613 Best Reward(扩展KMP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3613 [题目大意] 一个字符串的价值定义为,当它是一个回文串的时候,价值为每个字符的价值的和,如果 ...

  5. HDU 3613 Best Reward(扩展KMP求前后缀回文串)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3613 题目大意: 大意就是将字符串s分成两部分子串,若子串是回文串则需计算价值,否则价值为0,求分割 ...

  6. HDU 3613 Best Reward(manacher求前、后缀回文串)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3613 题目大意: 题目大意就是将字符串s分成两部分子串,若子串是回文串则需计算价值,否则价值为0,求分 ...

  7. HDU 3613 Best Reward(拓展KMP算法求解)

    题目链接: https://cn.vjudge.net/problem/HDU-3613 After an uphill battle, General Li won a great victory. ...

  8. HDU 3613 Best Reward(KMP算法求解一个串的前、后缀回文串标记数组)

    题目链接: https://cn.vjudge.net/problem/HDU-3613 After an uphill battle, General Li won a great victory. ...

  9. hdu 3613 Best Reward (manachar算法)

    Best Reward Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Prob ...

随机推荐

  1. 服务器相关 HTTP 请求错误

    HTTP 400 - 请求无效 HTTP 401.1 - 未授权:登录失败 HTTP 401.2 - 未授权:服务器配置问题导致登录失败 HTTP 401.3 - ACL 禁止访问资源 HTTP 40 ...

  2. 20172305 2018-2019-1 《Java软件结构与数据结构》第七周学习总结

    20172305 2018-2019-1 <Java软件结构与数据结构>第七周学习总结 教材学习内容总结 本周内容主要为书第十一章内容: 二叉查找树(附加属性的二叉树) 二叉查找树是对树中 ...

  3. STM32.ADC

    ADC实验 原理图: 1.ADC配置函数 /* enable adc1 and config adc1 to dma mode */ ADC1_Init(); /** * @brief ADC1初始化 ...

  4. Java编程学习之JDBC连接MySQL

    JDBC连接MySQL 一.对JDBC连接数据库的步骤1.加载数据库驱动//加载驱动Class.forName(driverClass)-------------------------------- ...

  5. HDU 6342 Expression in Memories(模拟)多校题解

    题意:给你一个规则,问你写的对不对. 思路:规则大概概括为:不能出现前导零,符号两边必须是合法数字.我们先把所有问号改好,再去判断现在是否合法,这样判断比一边改一边判断容易想. 下面的讲解问号只改为+ ...

  6. NOIP2016 “西湖边超萌小松鼠” 模拟赛

    总的来说,这套题的难度比较接近近些年来Day1的真实难度,认为非常值得一打 GotoAndPlay 题目大意 询问这个图上是否存在一种跳法,能跳到这个图上的每一个点 题目解析 犯了个低级错误,双向边忘 ...

  7. 组学航母----OMICtools

    OMICtools可谓是组学研究的航空母舰,其收集了基因组学.转录组学.蛋白质组学和代谢组学等分析研究常用的4400余个工具和数据库.它允许用户submit自己的工具/数据库,每一个上传的工具/数据库 ...

  8. 总结关于express vue-cli

    零零散散,拼起来,花了不少时间,这回把一些东西拼一下吧,免得到时又得重头开始,Blog还没弄好,打算用这些重新写一个,稍接不上,就落后了,这是技术,技术是不断更新换代的,明天这个框架,可以后天就有一个 ...

  9. vs_u8前缀

    1.ZC: 个人测试下来,VS2015开始 支持 u8前缀. 2.What's New for Visual C++ in Visual Studio 2015 https://msdn.micros ...

  10. Aho-Corasick算法

    2018-03-15 10:25:02 在计算机科学中,Aho–Corasick算法是由Alfred V. Aho和Margaret J.Corasick 发明的字符串搜索算法,用于在输入的一串字符串 ...