POJ 2115 C Looooops(模线性方程)
http://poj.org/problem?id=2115
题意:
给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER。
思路:
根据题意原题可化成c * x = b - a mod (2 ^ k),然后解这个模线性方程。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF=0x3f3f3f3f;
const int maxn=+; int a,b,c,k; void gcd(ll a,ll b,ll& d,ll& x,ll& y)
{
if(!b) {d=a;x=;y=;}
else
{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
} ll modeq(ll a,ll b,ll n)
{
ll e,i,d,x,y,f;
gcd(a,n,d,x,y);
if(b%d) return -;
else
{
f=n/d<?(-*n/d):n/d;
e=(x*(b/d)%f+f)%f;
return e;
}
} int main()
{
//freopen("D:\\input.txt","r",stdin);
while(~scanf("%d%d%d%d",&a,&b,&c,&k) && a+b+c+k!=)
{
ll n=b-a;
ll m=1LL<<k;
ll ans = modeq(c,n,m);
if(ans==-) puts("FOREVER");
else printf("%lld\n",ans);
}
return ;
}
POJ 2115 C Looooops(模线性方程)的更多相关文章
- POJ 2115 简单的模线性方程求解
简单的扩展欧几里得题 这里 2^k 不能自作聪明的用 1<<k来写 , k >= 31时就爆int了 , 即使定义为long long 也不能直接这样写 后来老老实实 for(int ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
- poj_2115C Looooops(模线性方程)
题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- POJ2115 C Looooops ——模线性方程(扩展gcd)
题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- POJ 2115 C Looooops(扩展欧几里得应用)
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...
- POJ 2115 C Looooops扩展欧几里得
题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...
- POJ2115 C Looooops 模线性方程(扩展欧几里得)
题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...
- 【题解】POJ 2115 C Looooops (Exgcd)
POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...
- POJ 2115 C Looooops(Exgcd)
[题目链接] http://poj.org/problem?id=2115 [题目大意] 求for (variable = A; variable != B; variable += C)的循环次数, ...
随机推荐
- fping命令测试主机存活
author:headsen chen date: 2018-10-09 20:11:22 1,测试一个范围内的主机: fping -a -g 192.168.1.1 192.168.1.255 ...
- 【Mac】Docker安装及基础使用
Docker 安装 在 Mac OS X 系统中,首先你要下载安装包安装:Docker Toolbox 安装过程中,可以选择是否安装 Docker Machine,Docker Compose 等,默 ...
- Windows Phone 7 程序等待页面的处理
程序启动通常会有一个等待的过程,在这个过程中可以通过使用Popup控件配合BackgroundWorker类启动后台线程来实现. 控件的代码 PopupSplash.xaml <UserCont ...
- 【转载】网络安全---Strurts2漏洞介绍
Apache Struts2 作为世界上最流行的 Java Web 服务器框架之一,3 月 7 日带来了本年度第一个高危漏洞——CVE编号 CVE-2017-5638 .其原因是由于 Apache S ...
- couldn't connect to host
“couldn't connect to host” 这样的错误可能是主机不可到达,或者端口不可到达. ping OK只代表主机可以到达. 端口不可到达可能是由于HTTP 服务器未启动或者监听在其他端 ...
- pta 天梯地图 (Dijkstra)
本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线:一条是最短距离的路线.题目保证对任意的查询请求,地图上都至少存在一条可达路线. 输 ...
- Mac下通过远程桌面向Windows发送Ctrl+Alt+Delete
今天在Mac中通过远程桌面给Windows安装Git Extensions,在安装程序自动关闭资源管理器时,Windows无响应,桌面显示黑屏.于是,想通过Ctrl+Alt+Delete快捷键调出对话 ...
- 使用CXF做webservice整合现有项目的例子
从网上看了很多CXF的资料,大部分都是单独的作为一个webservice项目,对于在现有的spring项目上提供webservice服务的例子基本没有找到. 我做的这个例子是介绍怎么把cxf整合到现有 ...
- type="submit"
<?php var_dump($_REQUEST); ?> <form action="" id="javascript_page"> ...
- nginx:负载均衡的session共享
一.场景 当nginx做了负载均衡之后,同一个ip的url请求服务器的时候,负载均衡会根据每台服务器的权重等一些设置将请求转发到不同的服务器上去进行处理,这样的话针对一些带有状态请求的情况来说就是个很 ...