【BZOJ1566】【NOI2009】管道取珠(动态规划)
【BZOJ1566】【NOI2009】管道取珠(动态规划)
题面
题解
蛤?只有两档部分分。一脸不爽.jpg
第一档?爆搜,这么显然,爆搜+状压最后统计一下就好了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
using namespace std;
#define ll long long
#define MOD 1024523
#define MAX 555
int a[1<<24];
int n,m,ans;
char S1[MAX],S2[MAX];
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
void dfs(int n,int m,int S)
{
if(!n&&!m){a[S]++;return;}
if(n)dfs(n-1,m,(S<<1)|(S1[n]-'A'));
if(m)dfs(n,m-1,(S<<1)|(S2[m]-'A'));
}
int main()
{
scanf("%d%d",&n,&m);
scanf("%s",S1+1);scanf("%s",S2+1);
dfs(n,m,0);
for(int i=0;i<1<<24;++i)add(ans,1ll*a[i]*a[i]%MOD);
printf("%d\n",ans);
return 0;
}
这种神仙题思维太优秀了。
考虑一下贡献是什么\(\sum a^2\)
可以理解为两个游戏同时进行,并且状态相同的方案总数
这样就可以\(dp\)了
设\(f[i][j][k][l]\)表示第一个游戏上下面还剩\(i,j\)个珠子,第二个还剩\(k,l\)的方案数
每次转移的时候强制选一样的分别减一就行了
发现\(i+j=k+l\),所以状态只要\(3\)维
洛谷卡空间,再把第一维滚掉就好了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MOD 1024523
#define MAX 505
int n,m,ans;
char S1[MAX],S2[MAX];
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
int f[2][MAX][MAX];
int main()
{
scanf("%d%d",&n,&m);
scanf("%s",S1+1);scanf("%s",S2+1);
f[n&1][m][n]=1;
for(int i=n,nw=n&1,pw=nw^1;~i;--i,nw^=1,pw^=1)
{
memset(f[pw],0,sizeof(f[pw]));
for(int j=m;~j;--j)
for(int k=n,l;~k;--k)
{
l=i+j-k;if(l<0||l>m)continue;
if(i&&k&&S1[i]==S1[k])add(f[pw][j][k-1],f[nw][j][k]);
if(i&&l&&S1[i]==S2[l])add(f[pw][j][k],f[nw][j][k]);
if(j&&k&&S2[j]==S1[k])add(f[nw][j-1][k-1],f[nw][j][k]);
if(j&&l&&S2[j]==S2[l])add(f[nw][j-1][k],f[nw][j][k]);
}
}
printf("%d\n",f[0][0][0]);
return 0;
}
【BZOJ1566】【NOI2009】管道取珠(动态规划)的更多相关文章
- BZOJ1566 [NOI2009]管道取珠 【dp】
题目 输入格式 第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. 第三行为一个AB字符串, ...
- bzoj1566: [NOI2009]管道取珠 DP
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...
- bzoj1566 [NOI2009]管道取珠——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...
- [bzoj1566][NOI2009]管道取珠
来自FallDream的博客,未经允许,请勿转载,谢谢. n<=500 神题...... 发现这个平方可以看作两个序列相同的对数 然后就可以表示状态了. f[i][j][k]表示两个序列各选了 ...
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- Bzoj 1566: [NOI2009]管道取珠(DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...
- NOI2009 管道取珠 神仙DP
原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...
- BZOJ.1566.[NOI2009]管道取珠(DP 思路)
BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...
- 【题解】NOI2009管道取珠
又是艰难想题的一晚,又是做不出来的一题 (:д:) 好想哭啊…… 这题最关键的一点还是提供一种全新的想法.看到平方和这种东西,真的不好dp.然而我一直陷在化式子的泥潭中出不来.平方能够联想到什么?原本 ...
- BZOJ1566:[NOI2009]管道取珠——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1566 https://www.luogu.org/problemnew/show/P1758 题目 ...
随机推荐
- 十、Django之Admin
一.Django Admin 管理工具 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.你可以在项目的 settings.py 中 ...
- Unity LineRenderer制作画版
Source: using System.Collections; using System.Collections.Generic; using UnityEngine; public class ...
- Maven学习(九)-----定制库到Maven本地资源库
这里有2个案例,需要手动发出Maven命令包括一个 jar 到 Maven 的本地资源库. 要使用的 jar 不存在于 Maven 的中心储存库中. 您创建了一个自定义的 jar ,而另一个 Mave ...
- Linux 优化详解
一.引子 系统优化是一项复杂.繁琐.长期的工作,优化前需要监测.采集.测试.评估,优化后也需要测试.采集.评估.监测,而且是一个长期和持续的过程,不是说现在又花了.测试了,以后就可以一劳永逸,而不是说 ...
- 廖雪峰git笔记
查看本地机子的在Git上的名字和邮箱:git config user.namegit config user.email 对所有仓库指定相同的用户名和Email地址:git config --glob ...
- day09,10 函数
一.函数 什么是函数 函数: 对代码块和功能的封装和定义 定义一个事情或者功能. 等到需要的时候直接去用就好了. 那么这里定义的东西就是一个函数. 语法: def 函数名(形参): 函数体 函数名(实 ...
- 直线石子合并(区间DP)
石子合并 时间限制:1000 ms | 内存限制:65535 KB 描述有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费 ...
- dede 后台登录以后一片空白
网上说的是 找到:include/common.inc.php文件,打开,查找程序代码: //error_reporting(E_ALL); error_reporting(E_ALL || ~E_ ...
- 1.openldap介绍
1.openldap介绍 OpenLDAP是轻型目录访问协议(Lightweight Directory Access Protocol,LDAP)的自由和开源的实现,在其OpenLDAP许可证下发行 ...
- $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 区别
PHP $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 的区别 PHP $_SERVER['SCRIPT_FILENAME'] 与 __FILE__ 通常情况下,PHP ...