解题:POI 2012 Cloakroom
首先,单独处理每个询问复杂度显然不可承受,还是考虑通过排序使得限制更容易达到:按照$a$将物品排序,按照$m$将询问排序,这样肯定是要不断添加物品才能达到要求,顺着做一遍就行了
然后发现$b$的限制仍然不好满足,但是我们的可行性dp的数组只记录了是否可行,还有利用的余地,那么以$dp[i]$记录达到$i$的所有方案中最小的$b$的最大值,查询的时候就可以判定了
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=,K=,inf=1e9;
struct a{int cc,aa,bb;}obj[N];
struct b{int m,k,s,id;}qry[M];
int n,T,last,dp[K],outp[M];
bool cmp1(a x,a y)
{
return x.aa<y.aa;
}
bool cmp2(b x,b y)
{
return x.m<y.m;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d%d",&obj[i].cc,&obj[i].aa,&obj[i].bb);
scanf("%d",&T);
for(int i=;i<=T;i++)
scanf("%d%d%d",&qry[i].m,&qry[i].k,&qry[i].s),qry[i].id=i;
sort(obj+,obj++n,cmp1),sort(qry+,qry++T,cmp2); dp[]=inf,last=;
for(int i=;i<=T;i++)
{
while(last<=n&&obj[last].aa<=qry[i].m)
{
for(int j=K-;j>=obj[last].cc;j--)
dp[j]=max(dp[j],min(dp[j-obj[last].cc],obj[last].bb));
last++;
}
outp[qry[i].id]=(dp[qry[i].k]>qry[i].m+qry[i].s);
}
for(int i=;i<=T;i++)
outp[i]?printf("TAK\n"):printf("NIE\n");
return ;
}
解题:POI 2012 Cloakroom的更多相关文章
- 解题:POI 2012 Well
题面 比较明显地能看出二分来,但是检查函数很难写.对于二分出的一个$mid$,我们要让它满足在$m$次操作内令序列中存在一个为零的位置,同时使得任意相邻的两项之差不超过$mid$ 第二项的检查比较好做 ...
- 【BZOJ 2803】【POI 2012】Prefixuffix
http://www.lydsy.com/JudgeOnline/problem.php?id=2803 核心思想是利用单调性. 因为长度为L的前缀和后缀循环同构是AB和BA的形式,我们设\(f(i) ...
- [ POI 2012 ] Letters
\(\\\) \(Description\) 给出两个长度为 \(N\) 的字符串\(S_1,S_2\),且保证两个字符串中每一个字符出现次数相同. 现在一次操作可以交换相邻的两个字符,问将 \(S_ ...
- POI题解整合
我也不知道为啥我就想把POI的题全都放到一篇blog里写完. POI 2005 SAM-Toy Cars 贪心,每次选下次出现最晚的. POI 2006 KRA-The Disks 箱子位置单调,所以 ...
- 解题:POI 2016 Nim z utrudnieniem
题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...
- 2012 East Central Regional Contest 解题报告
昨晚各种莫名其妙卡题. 不过细看这套题还挺简单的.全是各种暴力. 除了最后一道题计算几何看起来很麻烦的样子,其他题都是很好写的吧. A. Babs' Box Boutique 题目大意是给出不超过10 ...
- Regionals 2012, Asia - Jakarta 解题报告
啥都不会做了.. 做题慢死 A.Grandpa's Walk 签到题. 直接DFS就行. 注意先判断这个点可以作为一个路径的起点不. 然后再DFS. 否则处理起来略麻烦 #include <io ...
- Regionals 2012, North America - Greater NY 解题报告
这套题..除了几何的都出了 完全没时间学几何.杯具 A,B,J 水题不解释 C.Pen Counts 这题的话 写几个不等式限制边得范围就行了 然后枚举最小边 D.Maximum Random Wal ...
- 解题:NOI 2012 骑行川藏
题面 入手点是每段路程中能量$e$与时间$t$的关系,$t-e$这个函数的导数对于各个路段一样,否则我们可以从导数大的一段路抽出一部分能量分给导数小的,这样会更优 毕姥爷在考场上的做法:猜一猜,然后拿 ...
随机推荐
- ES6 之 解构赋值
本博文配合 阮一峰 <ES6 标准入门(第3版)>一书进行简要概述 ES6 中变量的解构赋值. 数组的解构赋值 基本用法 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这 ...
- HackRF One硬件架构及参数简介
本文内容.开发板及配件仅限用于学校或科研院所开展科研实验! 淘宝店铺名称:开源SDR实验室 HackRF链接:https://item.taobao.com/item.htm?spm=a1z10.1- ...
- Dilworth定理
来自网络的解释: 定理内容及其证明过程数学不好看不懂. 通俗解释: 把一个数列划分成最少的最长不升子序列的数目就等于这个数列的最长上升子序列的长度(LIS) EXAMPLE 1 HDU 1257 ...
- Tensorflow - Implement for a Softmax Regression Model on MNIST.
Coding according to TensorFlow 官方文档中文版 import tensorflow as tf from tensorflow.examples.tutorials.mn ...
- scrapy-redis+selenium+webdriver 部署到linux上
背景:在使用selenium时,在本地使用windows,都会有一个图形界面,但是到了生产环境linux上没有了图形界面怎么部署呢? 解决方案: 1.安装图形化界面,不推荐,因为安装图形化界面会占用很 ...
- 一个小时搭建一个全栈 Web 应用框架
把想法变为现实的能力是空想家与实干家的区别.不管你是在一家跨国公司工作,还是正在为自己的创业公司而努力,那些有能力将创意转化为真正产品的人,都具有宝贵的技能并拥有明显的实力.如果你能在不到一个小时的时 ...
- PSP Daily软件Alpha版本——基于spec评论
题目要求:每个小组评论其他小组Alpha发布作品的软件功能说明书.要求和提交在[https://edu.cnblogs.com/campus/nenu/SWE2017FALL/homework/122 ...
- Python:元组操作总结
Python的元组和列表类似,不同之处在于元组中的元素不能修改(因此元组又称为只读列表),且元组使用小括号而列表使用中括号,如下: tup1=('physics','chemistry',1997,2 ...
- Floyd算法(原理|代码实现)
http://www.cnblogs.com/twjcnblog/archive/2011/09/07/2170306.html 正如我们所知道的,Floyd算法用于求最短路径.Floyd算法可以说是 ...
- ZOJ 3946 Highway Project 贪心+最短路
题目链接: http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=3946 题解: 用dijkstra跑单元最短路径,如果对于顶点v,存 ...