1、最大似然估计数学定义:

  假设总体分布为f(x,θ),X1,X2...Xn为总体采样得到的样本。其中X1,X2...Xn独立同分布,可求得样本的联合概率密度函数为:

  

  其中θ是需要求得的未知量,xi是样本值。

  此时,L(x,θ)是关于θ的函数,称之为似然函数。

  求参数θ值使得似然函数值取最大值,这种方法称之为最大似然估计。》》MLE

2、如何求解最大似然估计

  其中x是已知的,θ是需要求的变量值。如果最大似然函数可导,可以通过对θ求导的方式,取得L(x,θ)的极值。

  在实际中为了方便计算,往往先对L(x,θ)取对数:

    加入求导:

3、使用MLE推导逻辑回归

  逻辑回归中使用sigmoid函数,将输出值确定在范围0到1之间。此时输出的值相当于概率中某一个样本的值。即上述所讲的X1,X2...Xn。

而sigmoid函数中所需要求的w,即为似然函数中的θ。

  有如下公式:

    1、sigmoid函数

      此时没有截距b,加入后在归一化时会被约掉,所以干脆不使用b。

    2、sigmoid求导

         3、对数似然函数    

      概率分布为:

      将上面两式子写作联合:

      联合概率密度函数为:

      

      构建似然函数:

  4、求解MLE

  5、与UFLDL中的RL结合,改变某些表述:

    概率分布:    

    似然函数:

    

    求解MLE:

    矩阵形式:

得到似然函数对θ的导数后,使用梯度下降法来更新θ,使得最终的结果接近于label。

4、使用似然估计推导softma

  (此处使用UFLDL中的公式,敲公式好麻烦。。。)

  (1)概率

  (2)似然函数

  (3)对似然函数关于θq求导

      似然函数展开:

      求导:

最后,同样使用梯度下降法来求最优θ。

LR可以使用最大熵来推导,在后续给出。

参考:

UFLDL

有机会,会做一个UFLDL的总结博客。

ML 徒手系列 最大似然估计的更多相关文章

  1. ML 徒手系列说明

    徒手系列正确打开方式: 1.徒手撸公式 2.徒手撸代码

  2. ML 徒手系列 拉格朗日乘子法

    拉格朗日乘子法是解决极值问题的方法. 本方法是计算多元函数在约束条件下的极值问题的方法. 1.多元函数与约束问题 如下图所示,f(x,y)为多元函数,g(x,y)=c为约束条件.目的是计算在约束条件下 ...

  3. ML 徒手系列 SVM

    在Lagrange乘子法中,介绍了如何构建及如何使用对偶函数,对目标问题进行求解. 这一章利用L乘子法对SVM进行推导. SVM 即支持向量机,是通过求解超平面进行分类的一种算法.所谓的支持向量,是在 ...

  4. 【ML数学知识】极大似然估计

    它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现 ...

  5. 参数估计:最大似然估计MLE

    http://blog.csdn.net/pipisorry/article/details/51461997 最大似然估计MLE 顾名思义,当然是要找到一个参数,使得L最大,为什么要使得它最大呢,因 ...

  6. 【MLE】最大似然估计Maximum Likelihood Estimation

    模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...

  7. 又看了一次EM 算法,还有高斯混合模型,最大似然估计

    先列明材料: 高斯混合模型的推导计算(英文版): http://www.seanborman.com/publications/EM_algorithm.pdf 这位翻译写成中文版: http://w ...

  8. B-概率论-极大似然估计

    [TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ ...

  9. LR为什么用极大似然估计,损失函数为什么是log损失函数(交叉熵)

    首先,逻辑回归是一个概率模型,不管x取什么值,最后模型的输出也是固定在(0,1)之间,这样就可以代表x取某个值时y是1的概率 这里边的参数就是θ,我们估计参数的时候常用的就是极大似然估计,为什么呢?可 ...

随机推荐

  1. 【ELK】抓取AWS-ELB日志的logstash配置文件

    前言 ELK搭建没有难度,难的是logstash的配置文件,logstash主要分为三个部分,input,filter和output. input,输入源可选的输入源由很多,详情见ELK官网,这里我们 ...

  2. UI组件之Button

    UIButton:按钮,可以实现用户和app的交互,父类是UIControl,事件驱动型的组件的父类都是UIControl.一般使用类方法创建一个对象,创建时指定button的类型, iOS7.0后采 ...

  3. 每天一个Linux命令(18)loacte命令

    locate 让使用者可以很快速的搜寻档案系统内是否有指定的档案.     (1)用法:   用法:  Locate  [选项] [参数]     (2)功能: 功能:  在mlocate数据库中搜索 ...

  4. CSS3自定义Checkbox特效

    在线演示 本地下载

  5. 一个例子看懂所有nodejs的官方网络demo

    今天看群里有人用AI技术写了个五子棋,正好用的socket.io,本身我自己很久没看nodejs了,再加上Tcp/IP的知识一直很弱,我就去官网看了下net.socket 发现之前以为懂的一个官方例子 ...

  6. Linux内核源码中的likely和unlikely释疑【转】

    本文转载自:https://my.oschina.net/armsky/blog/15320 ikely()与unlikely()在2.6内核中,随处可见,那为什么要用它们?它们之间有什么区别呢? 首 ...

  7. POJ 之 1002 :487-3279

    487-3279 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 242418   Accepted: 42978 Descr ...

  8. UVA 1664 Conquer a New Region (并查集+贪心)

    并查集的一道比较考想法的题 题意:给你n个点,接着给你n-1条边形成一颗生成树,每条边都有一个权值.求的是以一个点作为特殊点,并求出从此点出发到其他每个点的条件边权的总和最大,条件边权就是:起点到终点 ...

  9. 英语发音规则---发/i:/的字母及字母组合

    英语发音规则---发/i:/的字母及字母组合 一.总结 一句话总结: 1.字母组合ee发/iː/? bee beef see agree week meeting feel sweet free be ...

  10. hihocoder -1283 hiho密码(水题)

      时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho根据最近在密码学课上学习到的知识,开发出了一款hiho密码,这款密码的秘钥是这样生成的:对于一种有N个字母的语言 ...