ML 徒手系列 最大似然估计
1、最大似然估计数学定义:
假设总体分布为f(x,θ),X1,X2...Xn为总体采样得到的样本。其中X1,X2...Xn独立同分布,可求得样本的联合概率密度函数为:

其中θ是需要求得的未知量,xi是样本值。
此时,L(x,θ)是关于θ的函数,称之为似然函数。
求参数θ值使得似然函数值取最大值,这种方法称之为最大似然估计。》》MLE
2、如何求解最大似然估计
其中x是已知的,θ是需要求的变量值。如果最大似然函数可导,可以通过对θ求导的方式,取得L(x,θ)的极值。
在实际中为了方便计算,往往先对L(x,θ)取对数:
加入求导:

3、使用MLE推导逻辑回归
逻辑回归中使用sigmoid函数,将输出值确定在范围0到1之间。此时输出的值相当于概率中某一个样本的值。即上述所讲的X1,X2...Xn。
而sigmoid函数中所需要求的w,即为似然函数中的θ。
有如下公式:
1、sigmoid函数

此时没有截距b,加入后在归一化时会被约掉,所以干脆不使用b。
2、sigmoid求导
3、对数似然函数
概率分布为:

将上面两式子写作联合:

联合概率密度函数为:

构建似然函数:

4、求解MLE

5、与UFLDL中的RL结合,改变某些表述:
概率分布:

似然函数:

求解MLE:

矩阵形式:

得到似然函数对θ的导数后,使用梯度下降法来更新θ,使得最终的结果接近于label。
4、使用似然估计推导softma
(此处使用UFLDL中的公式,敲公式好麻烦。。。)
(1)概率

(2)似然函数

(3)对似然函数关于θq求导
似然函数展开:

求导:

最后,同样使用梯度下降法来求最优θ。
LR可以使用最大熵来推导,在后续给出。
参考:
有机会,会做一个UFLDL的总结博客。
ML 徒手系列 最大似然估计的更多相关文章
- ML 徒手系列说明
徒手系列正确打开方式: 1.徒手撸公式 2.徒手撸代码
- ML 徒手系列 拉格朗日乘子法
拉格朗日乘子法是解决极值问题的方法. 本方法是计算多元函数在约束条件下的极值问题的方法. 1.多元函数与约束问题 如下图所示,f(x,y)为多元函数,g(x,y)=c为约束条件.目的是计算在约束条件下 ...
- ML 徒手系列 SVM
在Lagrange乘子法中,介绍了如何构建及如何使用对偶函数,对目标问题进行求解. 这一章利用L乘子法对SVM进行推导. SVM 即支持向量机,是通过求解超平面进行分类的一种算法.所谓的支持向量,是在 ...
- 【ML数学知识】极大似然估计
它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现 ...
- 参数估计:最大似然估计MLE
http://blog.csdn.net/pipisorry/article/details/51461997 最大似然估计MLE 顾名思义,当然是要找到一个参数,使得L最大,为什么要使得它最大呢,因 ...
- 【MLE】最大似然估计Maximum Likelihood Estimation
模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个 ...
- 又看了一次EM 算法,还有高斯混合模型,最大似然估计
先列明材料: 高斯混合模型的推导计算(英文版): http://www.seanborman.com/publications/EM_algorithm.pdf 这位翻译写成中文版: http://w ...
- B-概率论-极大似然估计
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ ...
- LR为什么用极大似然估计,损失函数为什么是log损失函数(交叉熵)
首先,逻辑回归是一个概率模型,不管x取什么值,最后模型的输出也是固定在(0,1)之间,这样就可以代表x取某个值时y是1的概率 这里边的参数就是θ,我们估计参数的时候常用的就是极大似然估计,为什么呢?可 ...
随机推荐
- python+NLTK 自然语言学习处理六:分类和标注词汇一
在一段句子中是由各种词汇组成的.有名词,动词,形容词和副词.要理解这些句子,首先就需要将这些词类识别出来.将词汇按它们的词性(parts-of-speech,POS)分类并相应地对它们进行标注.这个过 ...
- 第一个Spring Boot程序启动报错了
创建完成第一个Spring Boot项目后,准备运行,尝一下胜利的果实. 启动日志如下 . ____ _ __ _ _ /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \ ( ...
- dva+antd写的一个react例子
github地址 https://github.com/shenggen1987/dva-cli-demo 效果图片
- js格式化货币金额
/* 格式化金额, s : 金额 n : 保留位数 */ function formatMoney(s, n) { n = n > 0 && n <= 20 ? n : 2 ...
- mathjax
MathJax.Hub.Typeset() method. This will cause the preprocessors (if any were loaded) to run over the ...
- 【leetcode刷提笔记】Permutations
Given a collection of numbers, return all possible permutations. For example,[1,2,3] have the follow ...
- codevs1279 Guard 的无聊
题目描述 Description 在那楼梯那边数实里面,有一只 guard,他活泼又聪明,他卖萌又霸气.他每天刷题虐 场 D 人考上了 PKU,如果无聊就去数一数质数~~ 有一天 guard 在纸上写 ...
- Spring- 通过Xml的方式完成Bean的实例化
传统应用程序可以通过反射方式进行实例化Bean,而Spring Ioc 容器则需要根据Bean定义的配置元数据使用反射机制来创建Bean.在Spring Ioc 容器中主要有以下几种创建Bean实例的 ...
- hdu-1025 Constructing Roads In JGShining's Kingdom(二分查找)
题目链接: Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- linux命令学习笔记(16):which命令
我们经常在linux要查找某个文件,但不知道放在哪里了,可以使用下面的一些命令来搜索: which 查看可执行文件的位置. whereis 查看文件的位置. locate 配合数据库查看文件位置. f ...