hdu 4454 Stealing a Cake(计算几何:最短距离、枚举/三分)
题意:已知起点、圆、矩形,要求计算从起点开始,经过圆(和圆上任一点接触即可),到达矩形的路径的最短距离。(可以穿过园)。
分析:没什么好的方法,凭感觉圆上的每个点对应最短距离,应该是一个凸函数,用三分来解。不过应该是分成两部分,用两次三分来解。具体原因不明,通过实验只能得出三分必须是针对一个凸函数,很明显,从0~2*pi不是一个凸函数,但同理,0~pi,pi~2*pi也不一定是个凸函数。个人认为,网络上流传的[0,pi][pi,2*pi]这种分法,并不存在合理性。继续思考= =
另外,直接暴力枚举也是能过的。
错误:分析圆上的点与矩形的位置关系写挫了,虽然现在还是研究不明白到底出了什么问题,应该是边界吧。
double rec(double x,double y)
{
check();
if(x-xi<eps&&y-yj>eps)
return len(x,y,xi,yj);
else if(x-xi<eps&&y-yi<eps)
return len(x,y,xi,yi);
else if(x-xj>eps&&y-yj>eps)
return len(x,y,xj,yj);
else if(x-xj>eps&&y-yi<eps)
return len(x,y,xj,yj); if(x-xi>eps&&x-xj<eps)
if(y-yj>eps)
return fabs(y-yj);
else if(y-yi<eps)
return fabs(yi-y);
else if(y-yi>eps&&y-yj<eps)
if(x-xi<eps)
return fabs(xi-x);
else if(x-xj>eps)
return fabs(x-xj);
}
错误的写法
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std; const double pi=acos(-1.0);
const double eps=1e-; double sx,sy;
double rx,ry,r;
double xi,yi,xj,yj; double degree()
{
return atan((ry-sy)/(rx-sx));
} double len(double x,double y,double a,double b)
{
return sqrt((x-a)*(x-a)+(y-b)*(y-b));
} void change(double& x,double &y)
{
double p;
p=x;
x=y;
y=p;
} void check()
{
if(xi>xj)
change(xi,xj);
if(yi>yj)
change(yi,yj);
} double rec(double x,double y)
{
double lenx=,leny=;
check();
if(x<xi)
lenx=xi-x;
else if(x>xj)
lenx=x-xj;
if(y<yi)
leny=yi-y;
else if(y>yj)
leny=y-yj;
return sqrt(lenx*lenx+leny*leny);
} double f(double m)
{
double dx=rx+r*cos(m);
double dy=ry+r*sin(m); double len1=len(dx,dy,sx,sy);
double len2=rec(dx,dy); return len1+len2;
} int main()
{
int n;
while(~scanf("%lf%lf",&sx,&sy))
{
if(fabs(sx)<eps&&fabs(sy)<eps)
return ;
scanf("%lf%lf%lf",&rx,&ry,&r);
scanf("%lf%lf%lf%lf",&xi,&yi,&xj,&yj); double l=degree(),r=l+pi;
while(fabs(r-l)>eps)
{
double m1=l+(r-l)/;
double m2=r-(r-l)/;
if(f(m1)<f(m2))
r=m2;
else
l=m1;
}
double l1=l;
l=degree()+pi;r=l+pi;
while(fabs(r-l)>eps)
{
double m1=l+(r-l)/;
double m2=r-(r-l)/;
if(f(m1)<f(m2))
r=m2;
else
l=m1;
}
double l2=l;
printf("%.2f\n",min(f(l1),f(l2)));
}
return ;
}
暴力枚举,奇葩的精度。不过相比较而言,这个算法根据有可信度。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std; const double INF=1e10;
const double pi=acos(-1.0);
const double eps=1e-; double sx,sy;
double rx,ry,r;
double xi,yi,xj,yj; double len(double x,double y,double a,double b)
{
return sqrt((x-a)*(x-a)+(y-b)*(y-b));
} void change(double& x,double &y)
{
double p;
p=x;
x=y;
y=p;
} void check()
{
if(xi>xj)
change(xi,xj);
if(yi>yj)
change(yi,yj);
} double rec(double x,double y)
{
double lenx=,leny=;
check();
if(x<xi)
lenx=xi-x;
else if(x>xj)
lenx=x-xj;
if(y<yi)
leny=yi-y;
else if(y>yj)
leny=y-yj;
return sqrt(lenx*lenx+leny*leny);
} double f(double m)
{
double dx=rx+r*cos(m);
double dy=ry+r*sin(m); double len1=len(dx,dy,sx,sy);
double len2=rec(dx,dy); return len1+len2;
} int main()
{
int n;
while(~scanf("%lf%lf",&sx,&sy))
{
if(fabs(sx)<eps&&fabs(sy)<eps)
return ;
scanf("%lf%lf%lf",&rx,&ry,&r);
scanf("%lf%lf%lf%lf",&xi,&yi,&xj,&yj); double m=INF;
for(double i=;i<=;i+=0.01)
{
m=min(m,f(i/*pi));
}
printf("%.2f\n",m);
}
return ;
}
hdu 4454 Stealing a Cake(计算几何:最短距离、枚举/三分)的更多相关文章
- hdu 4454 Stealing a Cake(三分之二)
pid=4454" target="_blank" style="">题目链接:hdu 4454 Stealing a Cake 题目大意:给定 ...
- hdu 4454 Stealing a Cake (三分)
Stealing a Cake Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4454 Stealing a Cake(枚举角度)
题目链接 去年杭州现场赛的神题..枚举角度..精度也不用注意.. #include <iostream> #include <cstdio> #include <cstr ...
- HDU 4454 Stealing a Cake --枚举
题意: 给一个点,一个圆,一个矩形, 求一条折线,从点出发,到圆,再到矩形的最短距离. 解法: 因为答案要求输出两位小数即可,精确度要求不是很高,于是可以试着爆一发,暴力角度得到圆上的点,然后求个距离 ...
- hdu 4454 Stealing a Cake 三分法
很容易想到三分法求解,不过要分别在0-pi,pi-2pi进行三分. 另外也可以直接暴力枚举…… 代码如下: #include<iostream> #include<stdio.h&g ...
- hdu 4454 Stealing a Cake
简单的计算几何: 可以把0-2*pi分成几千份,然后找出最小的: 也可以用三分: #include<cstdio> #include<cmath> #include<al ...
- hdu 4454 Stealing a Cake(三分法)
给定一个起始点,一个矩形,一个圆,三者互不相交.求从起始点->圆->矩形的最短距离. 自己画一画就知道距离和会是凹函数,不过不是一个凹函数.按与水平向量夹角为圆心角求圆上某点坐标,[0, ...
- HDU 4454 - Stealing a Cake(三分)
我比较快速的想到了三分,但是我是从0到2*pi区间进行三分,并且漏了一种点到边距离的情况,一直WA了好几次 后来画了下图才发现,0到2*pi区间内是有两个极值的,每个半圆存在一个极值 以下是代码 #i ...
- HDU - 4454: Stealing a Cake (圆上三分)
pro:给定一个蛋糕,一个矩阵房子,一只蚂蚁.最开始三者两两相离,问蚂蚁触摸到蛋糕后再触摸矩阵的最短距离.结果保留两位小数,坐标的绝对值<1e4: sol:由于坐标不大,而且精度要求不高,不难想 ...
随机推荐
- Python与数据库[2] -> 关系对象映射/ORM[4] -> sqlalchemy 的显式 ORM 访问方式
sqlalchemy 的显式 ORM 访问方式 对于sqlalchemy,可以利用一种显式的ORM方式进行访问,这种方式无需依赖声明层,而是显式地进行操作.还有一种访问方式为声明层 ORM 访问方式. ...
- python获取小程序手机号并绑定
最近在做小程序开发,在其中也遇到了很多的坑,获取小程序的手机号并绑定就遇到了一个很傻的坑. 流程介绍 官方流程图 小程序使用方法 需要将 <button> 组件 open-type 的值设 ...
- kong的preserve_host和strip_uri解析
preserve_host:当代理的时候,k代理时,Kong的默认行为是将上游请求的Host头设置为API的upstream_url属性的主机名.这个参数接受一个boolean值. 当为FALSE时, ...
- Oracle触发器简单入门记录
写在前面: 最近,老项目新增了日报优化的需求,丽姐让我用触发器去实现当数据插入或者更新的时候,实现对日报表数据更新操作.嗯嗯嗯呢,之前学习数据库的时候,有碰到过触发器,但都是一跳而过,也没怎么去真正的 ...
- ios中调用WCF
例子比较简单 记录下思路 1.接口中定义 实体和方法声明 //登录信息 [OperationContract] [WebInvoke(UriTemplate = " ...
- selenium 定位元素方式大全
starts-with 顾名思义,匹配一个属性开始位置的关键字 contains 匹配一个属性值中包含的字符串 text() 匹配的是显示文本信息,此处也可以用来做定位用 eg //input[sta ...
- javascript正则表达式小技巧
一.中括号[]里面的特殊字符是不用转义的,例如[/].[.].[*].[?].[+]都是可以直接匹配对应的字符\ . *?+.下面是测试结果: 所以,/[\d.]/这个正则表达式实际上是匹配数字字符或 ...
- oracle闪回flashback_transaction_query知识点
查询更新记录: select t.start_timestamp, t.commit_timestamp, t.logon_user, t.operation, t.table_name, t.tab ...
- JStorm的搭建文档
1.下载jstorm的jar包 https://github.com/alibaba/jstorm/releases 2.解压jstorm的包 tar -xvf jstorm-2.4.0.tgz mv ...
- 2017.3.31 spring mvc教程(四)全局的异常处理
学习的博客:http://elf8848.iteye.com/blog/875830/ 我项目中所用的版本:4.2.0.博客的时间比较早,11年的,学习的是Spring3 MVC.不知道版本上有没有变 ...