import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters
TIME_STEP = 10 # rnn time step
INPUT_SIZE = 1 # rnn input size
LR = 0.02 # learning rate # show data
steps = np.linspace(0, np.pi*2, 100, dtype=np.float32) # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
plt.plot(steps, y_np, 'r-', label='target (cos)')
plt.plot(steps, x_np, 'b-', label='input (sin)')
plt.legend(loc='best')
plt.show() class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__() self.rnn = nn.RNN(
input_size=INPUT_SIZE,
hidden_size=32, # rnn hidden unit
num_layers=1, # number of rnn layer
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(32, 1) def forward(self, x, h_state):
# x (batch, time_step, input_size)
# h_state (n_layers, batch, hidden_size)
# r_out (batch, time_step, hidden_size)
r_out, h_state = self.rnn(x, h_state) outs = [] # save all predictions
for time_step in range(r_out.size(1)): # calculate output for each time step
outs.append(self.out(r_out[:, time_step, :]))
return torch.stack(outs, dim=1), h_state # instead, for simplicity, you can replace above codes by follows
# r_out = r_out.view(-1, 32)
# outs = self.out(r_out)
# outs = outs.view(-1, TIME_STEP, 1)
# return outs, h_state # or even simpler, since nn.Linear can accept inputs of any dimension
# and returns outputs with same dimension except for the last
# outs = self.out(r_out)
# return outs rnn = RNN()
print(rnn) optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.MSELoss() h_state = None # for initial hidden state plt.figure(1, figsize=(12, 5))
plt.ion() # continuously plot for step in range(100):
start, end = step * np.pi, (step+1)*np.pi # time range
# use sin predicts cos
steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False) # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps) x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size)
y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis]) prediction, h_state = rnn(x, h_state) # rnn output
# !! next step is important !!
h_state = h_state.data # repack the hidden state, break the connection from last iteration loss = loss_func(prediction, y) # calculate loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients # plotting
plt.plot(steps, y_np.flatten(), 'r-')
plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
plt.draw(); plt.pause(0.05) plt.ioff()
plt.show()

运行结果为:

用正弦曲线去拟合余弦曲线

RNN回归的更多相关文章

  1. 循环神经网络LSTM RNN回归:sin曲线预测

    摘要:本篇文章将分享循环神经网络LSTM RNN如何实现回归预测. 本文分享自华为云社区<[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测 丨[百变AI秀]& ...

  2. TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  3. TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  4. 对比学习用 Keras 搭建 CNN RNN 等常用神经网络

    Keras 是一个兼容 Theano 和 Tensorflow 的神经网络高级包, 用他来组件一个神经网络更加快速, 几条语句就搞定了. 而且广泛的兼容性能使 Keras 在 Windows 和 Ma ...

  5. Tensorflow实战第十一课(RNN Regression 回归例子 )

    本节我们会使用RNN来进行回归训练(Regression),会继续使用自己创建的sin曲线预测一条cos曲线. 首先我们需要先确定RNN的各种参数: import tensorflow as tf i ...

  6. TensorFlow从入门到理解(五):你的第一个循环神经网络RNN(回归例子)

    运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIM ...

  7. lecture7-序列模型及递归神经网络RNN

    Hinton 第七课 .这里先说下RNN有recurrent neural network 和 recursive neural network两种,是不一样的,前者指的是一种人工神经网络,后者指的是 ...

  8. lecture7-序列模型及递归神经网络RNN(转载)

    Hinton 第七课 .这里先说下RNN有recurrent neural network 和 recursive neural network两种,是不一样的,前者指的是一种人工神经网络,后者指的是 ...

  9. 递归神经网络(RNN,Recurrent Neural Networks)和反向传播的指南 A guide to recurrent neural networks and backpropagation(转载)

    摘要 这篇文章提供了一个关于递归神经网络中某些概念的指南.与前馈网络不同,RNN可能非常敏感,并且适合于过去的输入(be adapted to past inputs).反向传播学习(backprop ...

随机推荐

  1. Python_if

    if if c语言中的if语句格式如下: if (条件) { 结果} python的格式与其不同,定义了自己的格式,更加的简明: if 条件 : 结果 print(111) if 3 > 2: ...

  2. Python之多线程多进程

    (一)进程 1.定义 进程:就是一组资源的集合.一个程序就是一个进程. 线程是用来干活的,只有进程的话是没办法运行的,进程里其实是线程在具体干活的. import threading import t ...

  3. Tomcat FAIL - Deploy Upload Failed, Exception: org.apache.tomcat.util.http.fileupload.FileUploadBase$SizeLimitExceededException: the request was rejected because its size (110960596) exceeds the confi

    https://maxrohde.com/2011/04/27/large-war-file-cannot-be-deployed-in-tomcat-7/ Go to the web.xml of ...

  4. Commons-DbUtils

    <dependency> <groupId>commons-dbutils</groupId> <artifactId>commons-dbutils& ...

  5. zookeeper-3.5.4-beta安装

    官网地址 https://zookeeper.apache.org/ 下载文件解压进入conf目录下将zoo_sample.cfg名称修改为zoo.cfg # The number of millis ...

  6. Lazy 延迟加载

    问题:最近遇到一个项目遇到一个问题(很久的项目,现阶段主要维护),程序初始化的时候比较慢,最后查原因的时候发现是因为一个类的构造方法里面有些逻辑, 解决办法:希望在使用的时候再进行加载,最后想到了延迟 ...

  7. luogu4166 最大土地面积 (旋转卡壳)

    首先这样的点一定在凸包上 然后旋转卡壳就可以 具体来说,枚举对角线的一个端点,另一个端点在凸包上转,剩下两个点就是一个叉积最大一个最小,而这两个点也是跟着转的 所以是$O(N^2)$ #include ...

  8. Educational Codeforces Round 62 (Rated for Div. 2)C

    题目链接 :C. Playlist #include<bits/stdc++.h> using namespace std; #define maxn 300005 #define LL ...

  9. sharding-jdbc学习

    sharding-jdbc的全局id生成策略是通过雪花算法来实现的. sharding-jdbc也是一个数据的中间件,可实现读写分离和分库分表,比mycat要简单些. nginx与ribbon实现负载 ...

  10. hello1源代码分析

    hello.java: package javaeetutorial.hello1; //这是一个java包 import javax.enterprise.context.RequestScoped ...