四、关联规则

Apriori算法代码(被调函数部分没怎么看懂)

from __future__ import print_function
import pandas as pd #自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
x = list(map(lambda i:sorted(i.split(ms)), x))
l = len(x[0])
r = []
for i in range(len(x)):
for j in range(i,len(x)):
if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:
r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))
return r #寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):
result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果 support_series = 1.0*d.sum()/len(d) #支持度序列
column = list(support_series[support_series > support].index) #初步根据支持度筛选
k = 0 while len(column) > 1:
k = k+1
print(u'\n正在进行第%s次搜索...' %k)
column = connect_string(column, ms)
print(u'数目:%s...' %len(column))
sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数 #创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
support_series = support_series.append(support_series_2)
column2 = [] for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
i = i.split(ms)
for j in range(len(i)):
column2.append(i[:j]+i[j+1:]+i[j:j+1]) cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列 for i in column2: #计算置信度序列
cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])] for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
result[i] = 0.0
result[i]['confidence'] = cofidence_series[i]
result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))] result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理,输出
print(u'\n结果为:')
print(result)
return result ## 上面部分可以封装在一个类中,然后在下面的主程序中直接调用find_rule函数 data = pd.read_excel('data/menu_orders.xls', header = None) #读取数据
print(u'\n转换原始数据至0-1矩阵...')
ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数
b = map(ct, data.as_matrix()) #用map方式执行
data = pd.DataFrame(list(b)).fillna(0) #实现矩阵转换,空值用0填充
print(u'\n转换完毕。')
del b #删除中间变量b,节省内存 support = 0.2 #最小支持度
confidence = 0.5 #最小置信度
ms = '---' #连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符 find_rule(data, support, confidence, ms)

五、时序模式

以下代码全程懵逼

#arima时序模型
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
plt.rcParams['axes.unicode_minus']=False #正常显示负号 #读取数据,指定日期列为指标,Pandas自动将“日期”列识别为Datetime格式
data = pd.read_excel('data/arima_data.xls', index_col = u'日期')
forecastnum = 5 #时序图
data.plot() #自相关图
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(data).show() #平稳性检测
from statsmodels.tsa.stattools import adfuller as ADF
print(u'原始序列的ADF检验结果为:', ADF(data[u'销量']))
#返回值依次为adf、pvalue、usedlag、nobs、critical values、icbest、regresults、resstore #差分后的结果
D_data = data.diff().dropna()
D_data.columns = [u'销量差分']
D_data.plot() #时序图
plot_acf(D_data).show() #自相关图
from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(D_data).show() #偏自相关图
print(u'差分序列的ADF检验结果为:', ADF(D_data[u'销量差分'])) #平稳性检测 #白噪声检验
from statsmodels.stats.diagnostic import acorr_ljungbox
print(u'差分序列的白噪声检验结果为:', acorr_ljungbox(D_data, lags=1)) #返回统计量和p值 from statsmodels.tsa.arima_model import ARIMA data[u'销量'] = data[u'销量'].astype(float)
#定阶
pmax = int(len(D_data)/10) #一般阶数不超过length/10
qmax = int(len(D_data)/10) #一般阶数不超过length/10
bic_matrix = [] #bic矩阵
for p in range(pmax+1):
tmp = []
for q in range(qmax+1):
try: #存在部分报错,所以用try来跳过报错。
tmp.append(ARIMA(data, (p,1,q)).fit().bic)
except:
tmp.append(None)
bic_matrix.append(tmp) bic_matrix = pd.DataFrame(bic_matrix) #从中可以找出最小值 p,q = bic_matrix.stack().idxmin() #先用stack展平,然后用idxmin找出最小值位置。
print(u'BIC最小的p值和q值为:%s、%s' %(p,q))
model = ARIMA(data, (p,1,q)).fit() #建立ARIMA(0, 1, 1)模型
model.summary2() #给出一份模型报告
model.forecast(5) #作为期5天的预测,返回预测结果、标准误差、置信区间。

六、离群点检测

#使用K-Means算法聚类消费行为特征数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
%matplotlib inline
plt.rcParams['axes.unicode_minus']=False #正常显示负号 #参数初始化
k = 3 #聚类的类别
threshold = 2 #离散点阈值
iteration = 500 #聚类最大循环次数 data = pd.read_excel('data/consumption_data.xls', index_col = 'Id') #读取数据
data_zs = 1.0*(data - data.mean())/data.std() #数据标准化 model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类,并发数4
model.fit(data_zs) #开始聚类 #标准化数据及其类别
r = pd.concat([data_zs, pd.Series(model.labels_, index = data.index)], axis = 1) #每个样本对应的类别
r.columns = list(data.columns) + [u'聚类类别'] #重命名表头 norm = []
for i in range(k): #逐一处理
norm_tmp = r[['R', 'F', 'M']][r[u'聚类类别'] == i]-model.cluster_centers_[i]
norm_tmp = norm_tmp.apply(np.linalg.norm, axis = 1) #求出绝对距离
norm.append(norm_tmp/norm_tmp.median()) #求相对距离并添加
norm = pd.concat(norm) #合并 norm[norm <= threshold].plot(style = 'go') #正常点
discrete_points = norm[norm > threshold] #离群点
discrete_points.plot(style = 'ro')
for i in range(len(discrete_points)): #离群点做标记
id = discrete_points.index[i]
n = discrete_points.iloc[i]
plt.annotate('(%s, %0.2f)'%(id, n), xy = (id, n), xytext = (id, n))
plt.xlabel(u'编号')
plt.ylabel(u'相对距离')
plt.show()

七、小结

[Python数据挖掘]第5章、挖掘建模(下)的更多相关文章

  1. [Python数据挖掘]第5章、挖掘建模(上)

    一.分类和回归 回归分析研究的范围大致如下: 1.逻辑回归 #逻辑回归 自动建模 import pandas as pd from sklearn.linear_model import Logist ...

  2. [Python数据挖掘]第8章、中医证型关联规则挖掘

    一.背景和挖掘目标 二.分析方法与过程 1.数据获取 2.数据预处理  1.筛选有效问卷(根据表8-6的标准) 共发放1253份问卷,其中有效问卷数为930  2.属性规约 3.数据变换 ''' 聚类 ...

  3. [Python数据挖掘]第7章、航空公司客户价值分析

    一.背景和挖掘目标 二.分析方法与过程 客户价值识别最常用的是RFM模型(最近消费时间间隔Recency,消费频率Frequency,消费金额Monetary) 1.EDA(探索性数据分析) #对数据 ...

  4. [Python数据挖掘]第6章、电力窃漏电用户自动识别

    一.背景与挖掘目标 相关背景自查 二.分析方法与过程 1.EDA(探索性数据分析) 1.分布分析 2.周期性分析 2.数据预处理 1.数据清洗 过滤非居民用电数据,过滤节假日用电数据(节假日用电量明显 ...

  5. [Python数据挖掘]第4章、数据预处理

    数据预处理主要包括数据清洗.数据集成.数据变换和数据规约,处理过程如图所示. 一.数据清洗 1.缺失值处理:删除.插补.不处理 ## 拉格朗日插值代码(使用缺失值前后各5个未缺失的数据建模) impo ...

  6. [Python数据挖掘]第2章、Python数据分析简介

    <Python数据分析与挖掘实战>的数据和代码,可从“泰迪杯”竞赛网站(http://www.tipdm.org/tj/661.jhtml)下载获得 1.Python数据结构 2.Nump ...

  7. [Python数据挖掘]第3章、数据探索

    1.缺失值处理:删除.插补.不处理 2.离群点分析:简单统计量分析.3σ原则(数据服从正态分布).箱型图(最好用) 离群点(异常值)定义为小于QL-1.5IQR或大于Qu+1.5IQR import ...

  8. Ubuntu系统下创建python数据挖掘虚拟环境

    虚拟环境:   虚拟环境是用于创建独立的python环境,允许我们使用不同的python模块和版本,而不混淆.   让我们了解一下产品研发过程中虚拟环境的必要性,在python项目中,显然经常要使用不 ...

  9. ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse

    ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse 书中,大部分出现hydro的地方,直接替换为indigo或ja ...

随机推荐

  1. 好大一个坑: EF Core 异步读取大字符串字段比同步慢100多倍

    这两天遇到一个奇怪的问题,通过 EF/EF Core 查询数据库速度奇慢,先是在传统的 ASP.NET 项目中遇到(用的是EF6.0),后来将该项目迁移至 ASP.NET Core 也是同样的问题(用 ...

  2. Docker 试用

    Docker还是从.net core 了解的 百度百科 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可 ...

  3. 如何关闭git pull产生的merge 信息

    编辑 ~/.gitconfig [core] mergeoptions = --no-edit 或者终端之行 git config --global core.mergeoptions --no-ed ...

  4. onu-reg-unreg.vbs

    Sub Main crt.Sleep 10000 Dim cnt For cnt = 0 To 1000000 crt.screen.Send "admin-status down" ...

  5. iOS 如何查看APP的jetsamEvent日志

    1.如何在iPhone上查看 设置-通用-分析-分析数据- JetsamEvent+日志 打头的系统日志. 2.如何在Mac 上查看此类分析日志 1.手机链接MAC 2.打开iTunes,点开手机图标 ...

  6. SQL开发——SQL语法

    文档资料参考: 参考:http://www.w3school.com.cn/sql/sql_syntax.asp 参考:http://wiki.jikexueyuan.com/project/sql/ ...

  7. 本地浏览器Websql数据库操作

    前几天看到一个小姐姐问我一个添加修改的我看了一下案例弄了一个出来.... 参考案例:HTML5本地数据库(WebSQL)[转] - 狂流 - 博客园  https://www.cnblogs.com/ ...

  8. Get WMS Static GoodLocation By Dynamic SQL

    Dynamic SQL Store Procedure: Note: use variable,you need convert varchar and as a variable,not direc ...

  9. app ios info权限配置:

    info权限配置: Privacy - Bluetooth Peripheral Usage Description --> App需要您的同意,才能访问蓝牙 Privacy - Calenda ...

  10. SQL Server脚本

    -- 清楚缓冲区 DBCC DROPCLEANBUFFERS -- 删除计划高速缓存中的元素 DBCC FREEPROCCACHE -- 执行时间 SET STATISTICS TIME ON -- ...