[再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])
设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ 存在, 并求其极限; (2) 计算 $\dps{\vlm{n}\sex{\cfrac{x_{n+1}}{x_n}}^{\frac{1}{x_n^2}}}$; (3) 证明 $\dps{\vlm{n}\sqrt{\cfrac{n}{3}}x_n=1}$.
证明: (1) 由 $0<x_{n+1}=\sin x_n<x_n$ 知 $\sed{x_n}$ 递减有下界, 而 $\dps{\vlm{n}x_n=x_\infty}$ 存在. 于 $x_{n+1}=\sin x_n$ 中令 $n\to\infty$ 有 $$\bex x_\infty=\sin x_\infty\ra x_\infty =0 \eex$$ ($0<x_\infty<\pi\ra \sin x_\infty <x_\infty$). (2) $$\beex \bea \vlm{n}\sex{\cfrac{x_{n+1}}{x_n}}^\frac{1}{x_n^2} &=\exp\sex{\vlm{n}\cfrac{\ln x_{n+1}-\ln x_n}{x_n^2}}\\ &=\exp\sex{\vlm{n}\cfrac{\ln \sin x_n-\ln x_n}{x_n^2}}\\ &=\exp\sex{\lim_{x\to 0^+}\cfrac{\ln \sin x-\ln x}{x^2}}\\ &=\exp\sez{\lim_{x\to 0^+}\cfrac{\cfrac{1}{\xi_x}(\sin x-x)}{x^2}}\quad\sex{\sin x<\xi_x<x}\\ &=\exp\sez{ \lim_{x\to 0^+} \cfrac{-\cfrac{1}{6}x^3+o(x^3)}{x^2\xi_x} }\\ &=e^{-\frac{1}{6}}. \eea \eeex$$ (3) $$\beex \bea \vlm{n}nx_n^2&=\vlm{n}\cfrac{n}{\cfrac{1}{x_n^2}}\\ &=\vlm{n}\cfrac{1}{\cfrac{1}{x_{n+1}^2}-\cfrac{1}{x_n^2}}\\ &=\vlm{n}\cfrac{x_n^2x_{n+1}^2}{x_n^2-x_{n+1}^2}\\ &=\vlm{n}\cfrac{x_n^2\sin^2x_n}{x_n^2-\sin^2x_n}\\ &=\lim_{x\to 0}\cfrac{x^2\sin^2x}{x^2-\sin^2x}\\ &=\lim_{x\to 0}\cfrac{x^4}{(x-\sin x)(x+\sin x)}\\ &=\cfrac{1}{\cfrac{1}{3!}\cdot 2}\\ &=3. \eea \eeex$$
[再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])的更多相关文章
- [再寄小读者之数学篇](2014-06-22 函数恒为零的一个充分条件 [中国科学技术大学2011年高等数学B考研试题])
设 $f(x)$ 在 $\bbR$ 上连续, 又 $$\bex \phi(x)=f(x)\int_0^x f(t)\rd t \eex$$ 单调递减. 证明: $f\equiv 0$. 证明: 设 $ ...
- [再寄小读者之数学篇](2014-06-22 不等式 [中国科学技术大学2011年高等数学B考研试题])
证明不等式: $$\bex 1+x\ln\sex{x+\sqrt{1+x^2}}>\sqrt{1+x^2},\quad x>0. \eex$$ 证明: 令 $x=\tan t,\ 0< ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
随机推荐
- JetBrains 注册码
C40PF37RR0-eyJsaWNlbnNlSWQiOiJDNDBQRjM3UlIwIiwibGljZW5zZWVOYW1lIjoiemhhbmcgeW9uZyIsImFzc2lnbmVlTmFtZ ...
- 戏说春秋_i春秋 writeup
<戏说春秋>第一关 图穷匕见 题目: 解:用winhex打开,拉到最后可发现一段编码 放到解密网站上解码. <戏说春秋>第二关 纸上谈兵 解:文中没有明确指出问题,也没有给出线 ...
- c# 正则验证
1.验证百分数 bool tempBool = Regex.IsMatch(str, @"[1-9]{0,1}[0-9](\\.[0-9])?%");
- vue_ui使用
cnpm install -g @vue/cli 下载 vue -V 查看版本 vue ui 运行vue ui 这样在浏览器上就能看到vue图形界面 根据需求设置
- 《JAVA程序设计》_第三周学习总结
20175217吴一凡 一.IDEA学生免费版申请后续 收到这个邮件,就说明你申请成功了,点这里进去就行了 点击接受 在下一个界面登录你之前注册的账号绑定许可证就行了,重新登录你的账号就有了一年的许可 ...
- InheritedWidget
下面这个示例是InheritedWidgt的一个简单用法: class CounterProvider extends InheritedWidget{//数据之前必须加上final,下面这三个数据都 ...
- 在区块链上表白——使用C#将一句话放入比特币的区块链上
最近在看区块链和比特币的知识,顺便简单研究了一下BitCoin的脚本语言,发现OP_RETURN这个命令可以在后面放入自己想说的内容,很多侧链啊,公证之类就是利用了这个特性,可以把一句话,或者一个哈希 ...
- 2.[Andriod]Andriod Studio结合Visual Studio Emulator for Android调试Android App
0. 工欲善其事必先利其器 上一篇博客对比了一下Android和WinPhnoe的布局容器,后续篇章重点放在Android的开发上了. 说到开发就绕不开调试程序,调试Android App我们有2种选 ...
- centos 7修改时区
在线上环境遇到时间差八小时,怀疑是时区的原因: 然后再linux上运行: date 发现输出的是UTC时间,时间与现在差八个小时 然后通过以下命令去修改时区: ln -sf /usr/share/zo ...
- vuex学习总结
vuex 学习 mapState,mapGetters 一般也写在 computed 中 , mapActions 一般写在 methods中.