[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1. 磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div(\rho {\bf u})=0,\\ \cfrac{\p (\rho{\bf u})}{\p t}&+\Div(\rho{\bf u}\times{\bf u}-{\bf P}) -\mu_0\rot{\bf H}\times{\bf H}=\rho {\bf F},\\ \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2+\cfrac{1}{2}\mu_0 H^2} +\Div\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P} {\bf u}}\\ &+\Div\sez{\cfrac{1}{\sigma}\rot{\bf H}\times{\bf H}-\mu_0({\bf u}\times{\bf H})\times{\bf H}} =\Div(\kappa \n T)+\rho {\bf F}\cdot{\bf u}. \eea \eeex$$
2. 由于电导率 $\sigma$ 的存在, 磁场具有扩散性.
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- spingboot一键部署到阿里云(Cloud Toolkit工具)
一般做法 一键部署工具 前些天在完成一个项目时候需要将springboot项目部署到服务器上, 以下是两种做法 前面介绍的是一般做法: 后面将介绍省去这些步骤的一键部署工具Cloud Toolki ...
- js 设备判断(移动端pc端 安卓ios 微信)
苹果安卓判断 $(function () { var u = navigator.userAgent, app = navigator.appVersion; var isAndroid = u.in ...
- vue 在safari动态多级面包屑导航样式不刷新的bug
前言: 最近做公司的管理系统,用到了elementUI 里面的 bread面包屑组件,本来一切好好的,谁知道mac的safari样式全部缓存了,硬是下面这种效果,真头疼 而chrome,QQ均显示正常 ...
- 理解mysql执行多表联合查询
阅读目录 一:inner join(内连接) 二:left join(左连接) 三:right join(右连接) 四:cross join(交叉连接) 五:union操作 六:node+mysql ...
- .net core下用HttpClient和asp.net core实现https的双向认证
关于https双向认证的知识可先行google,这时矸接代码. 为了双向认证,我们首先得准备两个crt证书,一个是client.crt,一个是server.crt,有时为了验证是否同一个根证书的验证, ...
- 一个方法教你认识ref(简单易懂)
参数分为值类型和引用类型,当我们将一个值类型的参数进行传递到另一个方法的时候相当于,将这个变量进行复制到该方法进行操作,但是不会对该变量原始的值有影响. 但是有时候我们需要他有“影响”于是ref就出现 ...
- Spring boot整合ElasticSearch案例分享+bboss
https://my.oschina.net/bboss/blog/1835601?tdsourcetag=s_pcqq_aiomsg 欢迎观看浏览
- 栈(LIFO)
1 栈的定义 栈是限定在表尾进行插入和删除操作的线性表. 2 栈的特点 1)栈是特殊的线性表,线性表也具有前驱后继性: 2)栈的插入和删除操作只能在表尾即栈顶进行: 3)后进先出. 3 栈的实现及关键 ...
- 上海上传数据重复-sftp端口关闭
关键: (1) sftp的测试指令:sftp -oPort=2125 meituan@220.248.104.170 (2)让上海那边自己试了一下,也不行,他们自己重置了一下sftp的密码,我们可以登 ...
- 洛谷 p1090 合并果子
https://www.luogu.org/problemnew/show/P1090 优先队列的经典题目 体现了stl的优越性 #include<bits/stdc++.h> using ...