1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div(\rho {\bf u})=0,\\ \cfrac{\p (\rho{\bf u})}{\p t}&+\Div(\rho{\bf u}\times{\bf u}-{\bf P}) -\mu_0\rot{\bf H}\times{\bf H}=\rho {\bf F},\\ \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2+\cfrac{1}{2}\mu_0 H^2} +\Div\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P} {\bf u}}\\ &+\Div\sez{\cfrac{1}{\sigma}\rot{\bf H}\times{\bf H}-\mu_0({\bf u}\times{\bf H})\times{\bf H}} =\Div(\kappa \n T)+\rho {\bf F}\cdot{\bf u}. \eea \eeex$$

2.  由于电导率 $\sigma$ 的存在, 磁场具有扩散性.

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. “软到不行”的WWDC2018

    转载请标明来源:https://www.cnblogs.com/zhanggui/p/9154542.html 简介 一年一度的WWDC于北京时间6月5号凌晨1点在加利福利亚州圣何塞的麦克恩利会议中心 ...

  2. Python安装包:协程(gevent)

  3. 位(Bit)与字节(Byte)

    字 word 字节 byte 位 bit 字长是指字的长度 1字=2字节(1 word = 2 byte) 1字节=8位(1 byte = 8bit) 一个字的字长为16 一个字节的字长是8 bps ...

  4. Java 通过地址获取经纬度 - 高德地图

    一.添加依赖 <dependency> <groupId>org.hibernate</groupId> <artifactId>hibernate-v ...

  5. Linux下添加windows字体

    在Linux下使用wqy字体,在视觉效果上就已近很好了,其实没有必要添加windows字体.但是显然有些人(比如领导,^..^)就喜欢宋体.楷体,所以添加windows字体有时还是需要的,幸运的是这件 ...

  6. open-falcon自定义push数据无法在grafana显示

    使用open-falcon自定义push数据,在open-falcon中数据能正常显示,而在grafana中添加监控项时却无法显示. 由上述现象可判断可能是由于open-falcon的api组件有问题 ...

  7. Asp.Net WebApi 使用OWIN架构后,出现 “没有 OWIN 身份验证管理器与此请求相关联(No OWIN authentication manager is associated with the request)” 异常的解决办法

    在Asp.Net WebApi 项目中使用OWIN模块之后,如果没有在OWIN的Startup类中配置认证方式,调用WebApi的相关Controller和Action就会出现如下异常: 出现错误. ...

  8. CF1120D Power Tree

    沙发~~ 题意简述 给你一棵有根树,定义叶子为度数为1的点. 你可以以$ w_x \(的代价控制\)x\(点.选择控制之后可以给它的子树里的叶子加 上\)t (t \in Z )$. 你要以最小的总代 ...

  9. day01(计算机组成,进制,内存分布,操作系统)

    本周内容: 第一天: 计算机原理 操作系统 第二天: 编程语言 python入门:环境 - 编辑器 变量 基本数据类型 学习方法: 鸡汤 - 干货 wwwh : what  | why | where ...

  10. C Programming Style 总结

    对材料C Programming Style for Engineering Computation的总结. 原文如下: C Programming Style for Engineering Com ...