【刷题】BZOJ 4031 [HEOI2015]小Z的房间
Description
你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。
Input
第一行两个数分别表示n和m。
Output
一行一个整数,表示合法的方案数 Mod 10^9
Sample Input
...
...
.*.
Sample Output
HINT
对于前100%的数据,n,m<=9
Solution
按照题目去建完边后就是一个生成树计数问题了
于是就上Matrix-Tree
这里简要介绍一下Matrix-Tree,想要详细了解的就自行百度吧
给定一个无向图G
它的度数矩阵D[G]是一个n*n的矩阵,只有对角线Dii上有值,值为i的度数
它的邻接矩阵A[G]是一个n*n的矩阵,纯粹地存图
它的基尔霍夫矩阵C[G]=D[G]-A[G]
那么G的生成树个数就是C[G]任何一个n-1阶主子式的行列式的绝对值。所谓n-1阶主子式,就是对于r(1<=r<=n),将C[G]的第r行,第r列同时去掉后得到的新矩阵
证明就算了,复杂无比
这道题就套上定理就可以了
求行列式的值,可以用高斯消元法把矩阵先变成上三角矩阵,那么最后的值就是变化后的矩阵的对角线上的值的乘积,再注意正负号
在calc中res不断乘以-1的原因其实是行列式的性质
高斯消元求方程组的解只要求解,所以没有乘-1这一说,而求行列式的值就需要注意每一个操作是否会对行列式最后的结果产生影响
这里用到的是行列式的两个性质:
1)行列式交换两行(列),行列式变为相反数——这就是不断乘-1的原因
2)行列式第i行(不变)乘k加上(减去)第j行作为新的第j行,行列式不变——这就是肆无忌惮地消元的原因,什么都不用考虑
#include<bits/stdc++.h>
#define ll long long
const int MAXN=,Mod=1e9;
int n,m,dr[][]={{,},{,},{,-},{-,}},id[MAXN][MAXN],cnt;
char G[MAXN][MAXN];
struct Matrix{
int a[MAXN*MAXN][MAXN*MAXN];
inline Matrix operator - (const Matrix &A) const {
Matrix B;
for(register int i=;i<=cnt;++i)
for(register int j=;j<=cnt;++j)B.a[i][j]=a[i][j]-A.a[i][j];
return B;
};
};
Matrix D,A,C;
template<typename T> inline void read(T &x)
{
T data=,w=;
char ch=;
while(ch!='-'&&(ch<''||ch>''))ch=getchar();
if(ch=='-')w=-,ch=getchar();
while(ch>=''&&ch<='')data=((T)data<<)+((T)data<<)+(ch^''),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<)putchar('-'),x=-x;
if(x>)write(x/);
putchar(x%+'');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
for(register int i=;i<=n;++i)
for(register int j=;j<=m;++j)
if(G[i][j]=='.')id[i][j]=++cnt;
for(register int i=;i<=n;++i)
for(register int j=;j<=m;++j)
if(G[i][j]=='.')
for(register int k=;k<;++k)
{
int dx=i+dr[k][],dy=j+dr[k][];
if(G[dx][dy]=='.')D.a[id[i][j]][id[i][j]]++,A.a[id[i][j]][id[dx][dy]]=;
}
}
inline ll calc()
{
for(register int i=;i<=cnt;++i)
for(register int j=;j<=cnt;++j)
if(C.a[i][j]<)C.a[i][j]+=Mod;
ll res=;
cnt--;
for(register int j=;j<=cnt;++j)
{
for(register int i=j+;i<=cnt;++i)
while(C.a[i][j])
{
ll t=C.a[j][j]/C.a[i][j];
for(register int k=j;k<=cnt;++k)
{
C.a[j][k]=(C.a[j][k]-t*C.a[i][k]%Mod+Mod)%Mod;
std::swap(C.a[j][k],C.a[i][k]);
}
res*=-;
}
(res*=C.a[j][j])%=Mod;
}
return (res+Mod)%Mod;
}
int main()
{
read(n);read(m);
for(register int i=;i<=n;++i)scanf("%s",G[i]+);
init();
C=D-A;
write(calc(),'\n');
return ;
}
4031 小Z的房间
【刷题】BZOJ 4031 [HEOI2015]小Z的房间的更多相关文章
- BZOJ 4031: [HEOI2015]小Z的房间 高斯消元 MartixTree定理 辗转相除法
4031: [HEOI2015]小Z的房间 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个 ...
- bzoj 4031: [HEOI2015]小Z的房间 轮廓线dp
4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 98 Solved: 29[Submit][Status] ...
- BZOJ 4031: [HEOI2015]小Z的房间 (矩阵树定理 板题)
背结论 : 度-邻 CODE1 O(n3logn)O(n^3logn)O(n3logn) #include <bits/stdc++.h> using namespace std; typ ...
- BZOJ 4031: [HEOI2015]小Z的房间 [矩阵树定理 行列式取模]
http://www.lydsy.com/JudgeOnline/problem.php?id=4031 裸题........ 问题在于模数是$10^9$ 我们发现消元的目的是让一个地方为0 辗转相除 ...
- BZOJ 4031 [HEOI2015]小Z的房间(Matrix-Tree定理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4031 [题目大意] 你突然有了一个大房子,房子里面有一些房间. 事实上,你的房子可以看 ...
- BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...
- BZOJ 4031: [HEOI2015]小Z的房间 Matrix-Tree定理
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4031 题解: Matrix-tree定理解决生成树计数问题,其中用到高斯消元法求上三角矩 ...
- bzoj 4031: [HEOI2015]小Z的房间【矩阵树定理】
是板子题,因为mod不是质数所以需要辗转相除然而并不知道为啥 高斯消元部分还不知道原理呢--先无脑背过的 #include<iostream> #include<cstdio> ...
- BZOJ 4031: [HEOI2015]小Z的房间(Matrix Tree)
传送门 解题思路 矩阵树定理模板题.矩阵树定理是求图中最小生成树个数,做法是首先求出基尔霍夫矩阵,就是度数矩阵\(-\)邻接矩阵.然后再求出这个矩阵的行列式,行列式的求法就是任意去掉一行一列,然后高斯 ...
随机推荐
- 执行sh脚本报“/usr/bin/env: "sh\r": 没有那个文件或目录”错误
出现这个错误的原因是出错的语句后面多了“\r”这个字符,换言之,脚本文件格式的问题,我们只需要把格式改成unix即可: vi xx.sh :set ff :set ff=unix :wq!
- Kubernetes中的网络
一.引子 既然Kubernetes中将容器的联网通过插件的方式来实现,那么该如何解决这个的联网问题呢? 如果你在本地单台机器上运行docker容器的话注意到所有容器都会处在docker0网桥自动分配的 ...
- Python之面向对象-反射
一.什么是反射 反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问,检测和修改它本省状态或行为的一种能力(自省).这一概念的提出很快引发了计算机科学领域关于应用反射性的研究.它首先被 ...
- Unity Shader 学习之旅
Unity Shader 学习之旅 unityshader图形图像 纸上学来终觉浅,绝知此事要躬行 美丽的梦和美丽的诗一样 都是可遇而不可求的——席慕蓉 一.渲染流水线 示例图 Tips:什么是 GP ...
- SNMP TRAP报文解析
转载地址: https://blog.csdn.net/eric_sunah/article/details/19557683 SNMP的报文格式 SNMP代理和管理站通过SNMP协议中的标准消息进行 ...
- 【LeetCode算法题库】Day7:Remove Nth Node From End of List & Valid Parentheses & Merge Two Lists
[Q19] Given a linked list, remove the n-th node from the end of list and return its head. Example: G ...
- javascript this(上)
javascript的this指向的是一个函数运行时动态绑定对象. this的4种常见的指向: 作为对象的方法调用 var obj={ name:"姚小白", getName:fu ...
- Java实验五(客户端)
一. 实验内容 1. 运行教材上TCP代码,结对进行,一人服务器,一人客户端: 2. 利用加解密代码包,编译运行代码,客户端加密,服务器解密: 3. 客户端加密明文后将密文通过 ...
- Beta 冲刺1
队名:日不落战队 安琪(队长) 过去两天完成了那些任务 修改个人信息界面. 修改手写涂鸦界面. 接下来的任务 改进手写涂鸦,加入其他功能. 还剩下的任务 社交模块功能. 遇到的困难 无. 有哪些收获和 ...
- sprint冲刺(第二天)
今天的每日立会是在早上早餐后8点在宿舍讨论的,大概讨论了关于四则运算练习器APP的看法,也对一些较为基础的功能进行说明