【刷题】BZOJ 4031 [HEOI2015]小Z的房间
Description
你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。
Input
第一行两个数分别表示n和m。
Output
一行一个整数,表示合法的方案数 Mod 10^9
Sample Input
...
...
.*.
Sample Output
HINT
对于前100%的数据,n,m<=9
Solution
按照题目去建完边后就是一个生成树计数问题了
于是就上Matrix-Tree
这里简要介绍一下Matrix-Tree,想要详细了解的就自行百度吧
给定一个无向图G
它的度数矩阵D[G]是一个n*n的矩阵,只有对角线Dii上有值,值为i的度数
它的邻接矩阵A[G]是一个n*n的矩阵,纯粹地存图
它的基尔霍夫矩阵C[G]=D[G]-A[G]
那么G的生成树个数就是C[G]任何一个n-1阶主子式的行列式的绝对值。所谓n-1阶主子式,就是对于r(1<=r<=n),将C[G]的第r行,第r列同时去掉后得到的新矩阵
证明就算了,复杂无比
这道题就套上定理就可以了
求行列式的值,可以用高斯消元法把矩阵先变成上三角矩阵,那么最后的值就是变化后的矩阵的对角线上的值的乘积,再注意正负号
在calc中res不断乘以-1的原因其实是行列式的性质
高斯消元求方程组的解只要求解,所以没有乘-1这一说,而求行列式的值就需要注意每一个操作是否会对行列式最后的结果产生影响
这里用到的是行列式的两个性质:
1)行列式交换两行(列),行列式变为相反数——这就是不断乘-1的原因
2)行列式第i行(不变)乘k加上(减去)第j行作为新的第j行,行列式不变——这就是肆无忌惮地消元的原因,什么都不用考虑
#include<bits/stdc++.h>
#define ll long long
const int MAXN=,Mod=1e9;
int n,m,dr[][]={{,},{,},{,-},{-,}},id[MAXN][MAXN],cnt;
char G[MAXN][MAXN];
struct Matrix{
int a[MAXN*MAXN][MAXN*MAXN];
inline Matrix operator - (const Matrix &A) const {
Matrix B;
for(register int i=;i<=cnt;++i)
for(register int j=;j<=cnt;++j)B.a[i][j]=a[i][j]-A.a[i][j];
return B;
};
};
Matrix D,A,C;
template<typename T> inline void read(T &x)
{
T data=,w=;
char ch=;
while(ch!='-'&&(ch<''||ch>''))ch=getchar();
if(ch=='-')w=-,ch=getchar();
while(ch>=''&&ch<='')data=((T)data<<)+((T)data<<)+(ch^''),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<)putchar('-'),x=-x;
if(x>)write(x/);
putchar(x%+'');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
for(register int i=;i<=n;++i)
for(register int j=;j<=m;++j)
if(G[i][j]=='.')id[i][j]=++cnt;
for(register int i=;i<=n;++i)
for(register int j=;j<=m;++j)
if(G[i][j]=='.')
for(register int k=;k<;++k)
{
int dx=i+dr[k][],dy=j+dr[k][];
if(G[dx][dy]=='.')D.a[id[i][j]][id[i][j]]++,A.a[id[i][j]][id[dx][dy]]=;
}
}
inline ll calc()
{
for(register int i=;i<=cnt;++i)
for(register int j=;j<=cnt;++j)
if(C.a[i][j]<)C.a[i][j]+=Mod;
ll res=;
cnt--;
for(register int j=;j<=cnt;++j)
{
for(register int i=j+;i<=cnt;++i)
while(C.a[i][j])
{
ll t=C.a[j][j]/C.a[i][j];
for(register int k=j;k<=cnt;++k)
{
C.a[j][k]=(C.a[j][k]-t*C.a[i][k]%Mod+Mod)%Mod;
std::swap(C.a[j][k],C.a[i][k]);
}
res*=-;
}
(res*=C.a[j][j])%=Mod;
}
return (res+Mod)%Mod;
}
int main()
{
read(n);read(m);
for(register int i=;i<=n;++i)scanf("%s",G[i]+);
init();
C=D-A;
write(calc(),'\n');
return ;
}
4031 小Z的房间
【刷题】BZOJ 4031 [HEOI2015]小Z的房间的更多相关文章
- BZOJ 4031: [HEOI2015]小Z的房间 高斯消元 MartixTree定理 辗转相除法
4031: [HEOI2015]小Z的房间 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个 ...
- bzoj 4031: [HEOI2015]小Z的房间 轮廓线dp
4031: [HEOI2015]小Z的房间 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 98 Solved: 29[Submit][Status] ...
- BZOJ 4031: [HEOI2015]小Z的房间 (矩阵树定理 板题)
背结论 : 度-邻 CODE1 O(n3logn)O(n^3logn)O(n3logn) #include <bits/stdc++.h> using namespace std; typ ...
- BZOJ 4031: [HEOI2015]小Z的房间 [矩阵树定理 行列式取模]
http://www.lydsy.com/JudgeOnline/problem.php?id=4031 裸题........ 问题在于模数是$10^9$ 我们发现消元的目的是让一个地方为0 辗转相除 ...
- BZOJ 4031 [HEOI2015]小Z的房间(Matrix-Tree定理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4031 [题目大意] 你突然有了一个大房子,房子里面有一些房间. 事实上,你的房子可以看 ...
- BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...
- BZOJ 4031: [HEOI2015]小Z的房间 Matrix-Tree定理
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4031 题解: Matrix-tree定理解决生成树计数问题,其中用到高斯消元法求上三角矩 ...
- bzoj 4031: [HEOI2015]小Z的房间【矩阵树定理】
是板子题,因为mod不是质数所以需要辗转相除然而并不知道为啥 高斯消元部分还不知道原理呢--先无脑背过的 #include<iostream> #include<cstdio> ...
- BZOJ 4031: [HEOI2015]小Z的房间(Matrix Tree)
传送门 解题思路 矩阵树定理模板题.矩阵树定理是求图中最小生成树个数,做法是首先求出基尔霍夫矩阵,就是度数矩阵\(-\)邻接矩阵.然后再求出这个矩阵的行列式,行列式的求法就是任意去掉一行一列,然后高斯 ...
随机推荐
- 【转】Linux系统下的ssh使用
Linux系统下的ssh使用(依据个人经验总结) 对于linux运维工作者而言,使用ssh远程远程服务器是再熟悉不过的了!对于ssh的一些严格设置也关系到服务器的安全维护,今天在此,就本人工作中使 ...
- MergeSort 归并排序(java)
MergeSort 归并排序 排序思想:1,分解待排序的n个元素为两个子列,各为n/2个元素 2,若子列没有排好序,重复1步骤,每个子列继续分解为两个子列,直至被分解的子列个数为1 3,子列元素个数为 ...
- Java字符串与日期互转
Java字符串与日期的相互转换 1.字符串转日期 字符串的格式与日期的格式一定要对应,并且字符串格式可以比日期格式多,但不能少,数字大小不自动计算日期.其中需要主要大小写 年yyyy 月MM 日dd ...
- 推荐3个小程序开源组件库——Vant、iView、ColorUI
推荐3个小程序开源组件库 在进行小程序开发时,经常会遇到编写组件方面的阻碍,这让我们花费大量的时间在页面以及 CSS 样式编写上.因此可以使用开源组件库,有些复杂的组件可以直接拿来使用,节省开发时间, ...
- 为 GlusterFS 设计新的xlator (编译及调用过程分析)
GlusterFS 是一个开源的网络分布式文件系统,前一阵子看了一点GlusterFS(Gluster)的代码,修改了部分代码,具体是增加了一个定制的xlator,简单记录一下. Gluster与xl ...
- windows 7 php 7.1 命令行 执行 中文文件名 的PHP文件
在PHP5.6时代直接执行 php.exe 文件.php 是没有的这个问题 在win下的命令行中 活动代码页命令 chcp 修改 chcp 936 //gbk chcp 65001 //utf-8 ...
- MFC常用操作
目录: 1.文件操作 1.1.获取文件大小 2.路径操作 2.1.创建多级目录 1.文件操作 1.1.获取文件大小 // 获取文件大小 ULONGLONG size = ; // 文件大小 CFile ...
- tensorflow enqueue_many传入多个值的列表传入异常问题————Shape () must have rank at least 1
tf 的队列操作enqueue_many传入的值是列表,但是放入[]列表抛异常 File "C:\Users\lihongjie\AppData\Local\Programs\Python\ ...
- Python之并发编程-多进程
目录 一.multiprocessiong模块介绍 二.Process类的介绍 三.进一步介绍(守护进程.锁.队列.管道.事件等) 1.守护进程 2.锁(同步锁.互斥锁) 3.信号量(了解) 4.队列 ...
- The Begining
学习记录之旅,就此开始.软件工程,Java神马的统统到我碗里来.