题目链接

bzoj2660: [Beijing wc2012]最多的方案

题解

对于一个数的斐波那契数列分解,他的最少项分解是唯一的

我们在拆分成的相临两项之间分解后者,这样形成的方案是最优且不重的

我们可以把它的分解某一项拆分

设dp[i][1/0]表示 对于最少拆分成的第i项斐波那切数拆不拆

在上一项j与这一项i的斐波那契数之间拆i项共有(i-j)/2种拆分方法,

转移方程就有了

代码

/*
对于一个数的斐波那契数列分解,他的最少项分解是唯一的
我们在拆分成的相临两项之间分解后者,这样形成的方案是最优且不重的
我们可以把它的分解某一项拆分
设dp[i][1/0]表示 对于最少拆分成的第i项斐波那切数拆不拆
在上一项j与这一项i的斐波那契数之间拆i项共有(i-j)/2种拆分方法,
转移方程就有了
*/
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
inline int read() {
int x = 0,f = 1;char c = getchar();
while(c < '0'||c > '9')c = getchar();
while(c <= '9' &&c >= '0')x = x * 10 + c - '0',c = getchar();
return x * f;
}
LL f[107];
int a[107],tmp[107];
LL dp[107][2];
int main() {
f[1] = 1;f[2] = 2;
LL n;
scanf("%lld",&n);
int num = 3; for(num = 3;;++ num) {f[num] = f[num - 1] + f[num - 2]; if(f[num] > n) break;}
int sum = 0;
for(int i = num;i >= 1;-- i) if(n >= f[i]) n -= f[i],tmp[++ sum] = i;
for(int cnt = 0,i = sum;i >= 1;-- i) a[++ cnt] = tmp[i];
dp[1][1] = 1;
dp[1][0] = a[1] - 1 >> 1;
for(int i = 2;i <= sum;++ i) {
dp[i][1] = dp[i - 1][1] + dp[i - 1][0];
dp[i][0] = dp[i - 1][1] * (a[i] - a[i - 1] - 1 >> 1) + dp[i - 1][0] * (a[i] - a[i - 1] >> 1);
}
printf("%lld\n",dp[sum][1] + dp[sum][0]);
return 0;
}

bzoj2660: [Beijing wc2012]最多的方案的更多相关文章

  1. bzoj千题计划213:bzoj2660: [Beijing wc2012]最多的方案

    http://www.lydsy.com/JudgeOnline/problem.php?id=2660 很容易想到是先把n表示成最大的两个斐波那契数相加,然后再拆分这两个斐波那契数 把数表示成斐波那 ...

  2. bzoj 2660: [Beijing wc2012]最多的方案

                       Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 617  Solved: 361[Submit][Status][ ...

  3. bzoj 2660: [Beijing wc2012]最多的方案【dp】

    有点神奇的dp 首先注意到任意一个数都能被表示成若干个斐波那契数的和的形式 先求出n可以字典序最大的表示 设f[i][0/1]表示第i个斐波那契数选或者不选 如果当前数不选,那就选比他小的两个数,否则 ...

  4. bzoj2660最多的方案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2660 当然可以看出  选了第 i 个斐波那契数<=>选了第 i - 1 和第 i ...

  5. Bzoj 2662: [BeiJing wc2012]冻结 dijkstra,堆,分层图,最短路

    2662: [BeiJing wc2012]冻结 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 647  Solved: 348[Submit][Sta ...

  6. BZOJ 2662: [BeiJing wc2012]冻结(最短路)

    这道题和 BZOJ 2763飞行路线 几乎一模一样..然后飞行路线我是1A,这道题WA了4次,我开始怀疑我的智商了.. ---------------------------------------- ...

  7. BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路

    BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路 Description “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切, ...

  8. 分层图最短路【bzoj2662】[BeiJing wc2012]冻结

    分层图最短路[bzoj2662][BeiJing wc2012]冻结 Description "我要成为魔法少女!" "那么,以灵魂为代价,你希望得到什么?" ...

  9. bzoj 2659: [Beijing wc2012]算不出的算式

    2659: [Beijing wc2012]算不出的算式 Time Limit: 3 Sec  Memory Limit: 128 MB Description 算不出的算式背景:曾经有一个老掉牙的游 ...

随机推荐

  1. 【SLAM】安装 g2o_viewer

    2017年2月8日,那是一个阴天.为了完成高翔博士的<一起做RGB-D SLAM>教程,我在 Ubuntu 14.04 安装 g2o.遇到困难,怎奈我眼瞎,找错了方向,浪费时间,没有成功安 ...

  2. j-linkV8固件更新(任意版本)

    在使用j-link v8调试程序时,容易出现固件丢失或出错的情况,导致电脑不能识别,j-link上面的灯不亮.我今天刚刚遇到了这个情况,于是就拆开外壳,在网上搜索资料,发现刷固件相关的还真多,但是有一 ...

  3. java 读取配置文件类

    import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; im ...

  4. python3实现socket通信

    目的:实现两台机器之间的通信.也就是说一个作为服务端(时刻监听接收数据),另一个作为客户端(发送数据). Python实现的过程个人理解: 1.服务端开始监听. 2.客户端发起连接请求. 3.服务端收 ...

  5. Flask:redirect()函数

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2 重定向,就是在客户端提交请求后,本来是访问A页面,结果,后台给了B页面,当然,B页面中才有需要的信息. 在Flask中 ...

  6. Django 2.0.3安装-压缩包方式

    OS:Windows 10家庭中文版,CPU:Intel Core i5-8250U Python版本:Python 2.7,Python 3.6 Django版本:2.0.3(最新2.0.5) 解压 ...

  7. Python 常用的内建函数

    内建函数 ​ Build-in Function,启动python解释器,输入dir(__builtins__), 可以看到很多python解释器启动后默认加载的属性和函数,这些函数称之为内建函数, ...

  8. php rabbitmq的扩展

    1.下载:https://github.com/alanxz/rabbitmq-c/archive/v0.9.0.tar.gz mkdir build && cd build # 这一 ...

  9. 使用html+css+js实现日历与定时器,看看今天的日期和今天剩余的时间。

    使用html+css+js实现日历与定时器,看看今天的日期和今天剩余的时间. 效果图: 哎,今天就又这么过去了,过的可真快 . 代码如下,复制即可使用: <!DOCTYPE html> & ...

  10. (一) solr的安装与配置

    载solr文件压缩包,并解压 ,要运行solr服务之前需要先安装jdk,具体安装过程可以参看下面这篇文章: http://www.cnblogs.com/xiazh/archive/2012/05/2 ...