luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

感觉其实很水?
题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算
对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态
那么,有\(n\;mod\;x\)个\(\left \lfloor \frac{n}{x} \right \rfloor + 1\)的堆以及\(x - n\;mod\;x\)个\(\left \lfloor \frac{n}{x} \right \rfloor\)的堆
暴力转移就是\(O(10^{10})\)的
显然上面可以数论分块,再讨论一下奇偶即可
复杂度\(O(10^5 \sqrt 10^5)\)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
const int sid = 2e5 + 5;
int T, F, tim;
int sg[sid], mex[sid];
inline void init() {
rep(i, F, 100000) {
++ tim;
for(ri ii = 2, jj; ii <= i; ii = jj + 1) {
jj = i / (i / ii);
int p = i / ii, S = i - p * ii, S2 = ii - S, SG = 0;
if(S & 1) SG ^= sg[p + 1];
if(S2 & 1) SG ^= sg[p]; mex[SG] = tim;
if(ii + 1 > jj) continue;
S = i - p * (ii + 1); S2 = (ii + 1) - S; SG = 0;
if(S & 1) SG ^= sg[p + 1];
if(S2 & 1) SG ^= sg[p]; mex[SG] = tim;
}
rep(j, 0, 100000) if(mex[j] != tim)
{ sg[i] = j; break; }
}
}
int main() {
cin >> T >> F;
init();
while(T --) {
int n, x, SG = 0;
cin >> n;
rep(i, 1, n) { cin >> x; SG ^= sg[x]; }
printf("%d ", SG ? 1 : 0);
}
return 0;
}
luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论的更多相关文章
- 【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...
- bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理
3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1929 Solved: 686[Submit][Status ...
- 洛谷 P3235 [HNOI2014]江南乐 解题报告
P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...
- luogu P3235 [HNOI2014]江南乐
传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...
- [HNOI2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- 【LG3235】 [HNOI2014]江南乐
题目描述 给出\(n\)堆石子, 每次可以选择将大于某个数\(f\)一堆平均分成多个堆, 最后不能操作的失败. 题解 10pts 直接爆搜即可. 70pts 像我们对这类题目的常规操作那样,将一整个局 ...
- bzoj 3576: [Hnoi2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...
- 【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学
题目描述 两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过 ...
- bzoj 3576: [Hnoi2014]江南乐【博弈论】
这个东西卡常--预处理的时候要先把i%j,i/j都用变量表示,还要把%2变成&1-- 首先每一堆都是不相关子游戏,所以对于每一堆求sg即可 考虑暴力枚举石子数i,分割块数j,分解成子问题求xo ...
随机推荐
- Dream------Hadoop--Hadoop HA QJM (Quorum Journal Manager)
In a typical HA cluster, two separate machines are configured as NameNodes. At any point in time, ex ...
- java数字转字符串前面自动补0或者其他数字
/** * Java里数字转字符串前面自动补0的实现. * * @author xiaomo * */ public class TestStringFormat { public ...
- Shell-修改MySQL默认root密码
Code: mysqltmppwd=`cat /tmp/.mysql_secret | cut -b 87-102` mysqladmin -u root -p${mysqltmppwd} passw ...
- 关于app的cpu占用率想到的几个问题
1.top 命令获取的cpu是手机瞬间的cpu 2.dumpsys获取的是一段时间cpu的平均值?那么这段时间是指哪段,从哪开始到什么时候结束? 3.如果想测试app某操作下的cpu占用情况时候.应该 ...
- 『实践』Java Web开发之分页(ajax)
1.需要用到的jar包.js文件 JSONArray().fromObject()需要的jar包: (1)commons-beanutils-1.8.3.jar (2)commons-collecti ...
- jQuery简单介绍
一.jQuery介绍 jQuery是一个轻量级的.兼容多浏览器的JavaScript库. jQuery使用户能够更方便地处理HTML Document.Events.实现动画效果.方便地进行Ajax交 ...
- python socket编程和黏包问题
一.基于TCP的socket tcp是基于链接的,必须先启动服务端,然后再启动客户端去链接服务端,有顺序,不重复,可靠.不会被加上数据边界. server端 import socket sk = so ...
- Linux 获取网关地址
route命令的用法:操作或者显示IP路由表route:DESCRIPTION Route manipulates the kernel's IP routing tables. Its primar ...
- 如何查看页面是否开启了gzip压缩
1.谷歌浏览器 F12 2.在表头单击鼠标右键 3.如果开启了gzip则显示gzip,没有则是空
- java基础52 编码与解码
1.解码与编码的含义 编码:把看得懂的字符变成看不懂的码值,这个过程就叫编码 解码:根据码值查到相对应的字符,我们把这个过程就叫解码 注意:编码与解码时,我们一般使用统一的码表,否则非常容易出现 ...