Hive系列博文,持续更新~~~

大数据系列之数据仓库Hive原理

大数据系列之数据仓库Hive安装

大数据系列之数据仓库Hive中分区Partition如何使用

大数据系列之数据仓库Hive命令使用及JDBC连接

Hive的工作原理简单来说就是一个查询引擎

先来一张Hive的架构图:

Hive的工作原理如下:

接收到一个sql,后面做的事情包括:
1.词法分析/语法分析
使用antlr将SQL语句解析成抽象语法树-AST
2.语义分析
从Megastore获取模式信息,验证SQL语句中队表名,列名,以及数据类型的检查和隐式转换,以及Hive提供的函数和用户自定义的函数(UDF/UAF)
3.逻辑计划生产
生成逻辑计划-算子树
4.逻辑计划优化
对算子树进行优化,包括列剪枝,分区剪枝,谓词下推等
5.物理计划生成
将逻辑计划生产包含由MapReduce任务组成的DAG的物理计划
6.物理计划执行
将DAG发送到Hadoop集群进行执行
7.将查询结果返回

流程如下图:

Query Compiler

新版本的Hive也支持使用Tez或Spark作为执行引擎。


物理计划可以通过hive的Explain命令输出

例如:

: jdbc:hive2://master:10000/dbmfz> explain select count(*) from record_dimension;
+------------------------------------------------------------------------------------------------------+--+
| Explain |
+------------------------------------------------------------------------------------------------------+--+
| STAGE DEPENDENCIES: |
| Stage- is a root stage |
| Stage- depends on stages: Stage- |
| |
| STAGE PLANS: |
| Stage: Stage- |
| Map Reduce |
| Map Operator Tree: |
| TableScan |
| alias: record_dimension |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| Select Operator |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| Group By Operator |
| aggregations: count() |
| mode: hash |
| outputColumnNames: _col0 |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| Reduce Output Operator |
| sort order: |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| value expressions: _col0 (type: bigint) |
| Reduce Operator Tree: |
| Group By Operator |
| aggregations: count(VALUE._col0) |
| mode: mergepartial |
| outputColumnNames: _col0 |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| File Output Operator |
| compressed: false |
| Statistics: Num rows: Data size: Basic stats: COMPLETE Column stats: COMPLETE |
| table: |
| input format: org.apache.hadoop.mapred.SequenceFileInputFormat |
| output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat |
| serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe |
| |
| Stage: Stage- |
| Fetch Operator |
| limit: - |
| Processor Tree: |
| ListSink |
| |
+------------------------------------------------------------------------------------------------------+--+
rows selected (0.844 seconds)

除了DML,Hive也提供DDL来创建表的schema。
Hive数据存储支持HDFS的一些文件格式,比如CSV,Sequence File,Avro,RC File,ORC,Parquet。也支持访问HBase。
Hive提供一个CLI工具,类似Oracle的sqlplus,可以交互式执行sql,提供JDBC驱动作为Java的API。

转载请注明出处:

作者:mengfanzhu

原文链接:http://www.cnblogs.com/cnmenglang/p/6684615.html

大数据系列之数据仓库Hive原理的更多相关文章

  1. 大数据系列之数据仓库Hive安装

    Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...

  2. 大数据系列之数据仓库Hive命令使用及JDBC连接

    Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...

  3. 大数据系列之数据仓库Hive中分区Partition如何使用

    Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...

  4. 【大数据系列】apache hive 官方文档翻译

    GettingStarted 开始 Created by Confluence Administrator, last modified by Lefty Leverenz on Jun 15, 20 ...

  5. 大数据系列(3)——Hadoop集群完全分布式坏境搭建

    前言 上一篇我们讲解了Hadoop单节点的安装,并且已经通过VMware安装了一台CentOS 6.8的Linux系统,咱们本篇的目标就是要配置一个真正的完全分布式的Hadoop集群,闲言少叙,进入本 ...

  6. 大数据系列之并行计算引擎Spark介绍

    相关博文:大数据系列之并行计算引擎Spark部署及应用 Spark: Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. Spark是UC Berkeley AMP lab ( ...

  7. 大数据系列之分布式计算批处理引擎MapReduce实践

    关于MR的工作原理不做过多叙述,本文将对MapReduce的实例WordCount(单词计数程序)做实践,从而理解MapReduce的工作机制. WordCount: 1.应用场景,在大量文件中存储了 ...

  8. 大数据系列(5)——Hadoop集群MYSQL的安装

    前言 有一段时间没写文章了,最近事情挺多的,现在咱们回归正题,经过前面四篇文章的介绍,已经通过VMware安装了Hadoop的集群环境,相关的两款软件VSFTP和SecureCRT也已经正常安装了. ...

  9. 大数据系列(4)——Hadoop集群VSFTP和SecureCRT安装配置

    前言 经过前三篇文章的介绍,已经通过VMware安装了Hadoop的集群环境,当然,我相信安装的过程肯定遇到或多或少的问题,这些都需要自己解决,解决的过程就是学习的过程,本篇的来介绍几个Hadoop环 ...

随机推荐

  1. Git-balabala

    想必大家都听说过且用过Github(没听说过-.-),我也一直用Github管理我的代码到现在,如果你只是将其作为自己私有的代码仓库,那么平时用得最多的就是git clone, git add以及gi ...

  2. [USACO18OPEN]Talent Show

    题目描述 Farmer John要带着他的N头奶牛,方便起见编号为1…N,到农业展览会上去,参加每年的达牛秀!他的第iii头奶牛重量为wi,才艺水平为ti​,两者都是整数. 在到达时,Farmer J ...

  3. Jenkins(三)---Jenkins初始配置和插件配置

    从Jenkins(二)中可以知道 jenkins 的工作目录为/opt/jenkins [很重要!!!][很重要!!!][很重要!!!]在配置此目录以前,将这两台的主机进行配置为ssh root用户无 ...

  4. 触发器的SQL语法

    create trigger triggerName after/before insert/update/delete on 表名 for each row #这句话在mysql是固定的 begin ...

  5. vue项目post请求405报错解决办法。

    步骤一: 确定ajax语法没有错误. 步骤二: 与后台对接确认请求是否打到nginx上? 步骤三: 检查nginx是否配置了事件转发,比如我们的接口是在,当前地址的8100端口上,并且接口地址上有v1 ...

  6. 第10章-Vue.js 项目实战

    一.本节内容 掌握项目环境中路由的配置方法 ***** 熟练掌握编写单文件组件的编写 *** 能够使用swiper.js进行轮播图组件的封装 能够使用axios进行数据请求 二.webpack项目的目 ...

  7. Java操作Kafka执行不成功的解决方法,Kafka Broker Advertised.Listeners属性的设置

    创建Spring Boot项目继承Kafka,向Kafka发送消息始终不成功.具体项目配置如下: <?xml version="1.0" encoding="UTF ...

  8. bzoj千题计划149:bzoj2527: [Poi2011]Meteors

    http://www.lydsy.com/JudgeOnline/problem.php?id=2527 整体二分 区间加,单点查,树状数组维护差分序列 注意 累积可能会爆long long,所以一满 ...

  9. 值得关注的sql-on-hadoop框架

    http://www.infoq.com/cn/news/2014/06/sql-on-hadoop 数据的操作语言是SQL,因此很多工具的开发目标自然就是能够在Hadoop上使用SQL.这些工具有些 ...

  10. MongoDB - MongoDB CRUD Operations, Delete Documents

    Delete Methods MongoDB provides the following methods to delete documents of a collection: Method De ...