传送门啦

传送门啦

一般这种位运算的题都要把每一位拆开来看,因为位运算每个位的结果这和这一位的数有关。

这样我们用s[i]表示a的前缀和,即 $ a[1]+a[2]+....a[i] $ ,然后我们从这些数二进制最右位 $ 2^0 $ 开始,按照每一位对答案的贡献来计算。

假设我们现在算到最右位 $ 2^0 $ ,并且位于第i个数,我们想要知道以i结尾的连续和对答案的贡献,只需要知道有多少 $ s[i]-s[j](0<=j<i)$ 的 $ 2^0 $ 位是1。 (设s[0]=0)

如果这个数是奇数,就说明异或了1奇数次,也就相当于异或了1,我们只需要把记录这一位总的异或贡献的变量 $ cnt $ 异或1即可;

如果是偶数就不用管了,对答案没有贡献。

对于数的每一位如果最后 $ cnt=1 $ 的话,就说明在这一位所有连续和的异或和为1,我们就需要把答案加上(1<<(这个位数))。

那如何快速计算有多少个 $ s[i]-s[j] $ 的二进制第k位是否为1呢??

答案是利用权值树状数组。

考虑到 $ \sum a $ 最大才有1000000,我们构造两棵权值树状数组,一棵记录当前位为1的,另一棵记录为0的。

如果当前扫描到的 $ s[i] $ 的二进制第k位为1,那么对这一位的答案有贡献的只有那些第k位为1且第k位向右的数比 $ s[i] $ 第k位向右的数大的或者第k位为0且第k位向右的数不比 $ s[i] $ 第k位向右的数大的。

因为如果第k位都为1的话,那么只有后面那些位的和大于s[i]的数, $ s[i] $ 减去它之后第k位才能出现1(因为s[i]比它小的话需要向更高位借数,就和小学学的横式减法差不多),从而对答案作出贡献;

如果第k位为0的话,如果后面再比 $ s[i] $ 大的话, $ s[i] $ 第k位的1就需要借给低一位的了,所以后面必须不比 $ s[i] $ 大。

这样就很好用权值树状数组维护了。。。。

include

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define max(a,b) (a)>(b)?(a):(b)
using namespace std;
const int maxn = 1e6 + 4; inline int read() {
char ch = getchar();
int f = 1 , x = 0;
while(ch > '9' || ch < '0') {
if(ch == '-')f = -1;
ch = getchar();
}
while(ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + ch - '0';
ch = getchar();
}
return x * f;
} ll s[maxn],a[maxn];
ll f[2][maxn],n,m,ans=0,now,cnt=0,tmp;
bool flag;
ll maxx; inline int lowbit(int x){return x & (-x);} inline void update(ll x,ll y) {
for(; x<=1000000; x+=lowbit(x))
f[y][x]++;
} inline ll query(ll x,ll y) {
ll ansd = 0;
for(; x; x-=lowbit(x))
ansd += f[y][x];
return ansd;
} int main() {
n = read();
for(ll i=1; i<=n; i++){
s[i] = read();
s[i] += s[i - 1];
maxx = max(maxx , s[i]);
}
for(ll i=0; i<=20; i++) {
if((1 << i) > maxn) break;
memset(f , 0 , sizeof(f));
flag = 0 , cnt = 0;
update(1 , 0);
for(ll j=1; j<=n; j++) {
tmp = s[j] & (1 << i);
if(tmp) now = query(a[j] + 1 , 0) + query(1000000 , 1) - query(a[j] + 1 , 1);
else now = query(a[j] + 1 , 1) + query(1000000 , 0) - query(a[j] + 1 , 0);
if(now % 2 ) cnt ^= 1;
update(a[j] + 1 , (tmp > 0 ? 1 : 0));
a[j] |= tmp;
}
if(cnt) ans += (1 << i);
}
cout<<ans;
return 0;
}

洛谷P3760异或和的更多相关文章

  1. 洛谷 P3908 异或之和

    洛谷 P3908 异或之和 题目描述 求1⨁2⨁⋯⨁N 的值. A⨁B 即 AA, B 按位异或. 输入输出格式 输入格式: 1 个整数 N . 输出格式: 1 个整数,表示所求的值. 输入输出样例 ...

  2. 洛谷P3760 - [TJOI2017]异或和

    Portal Description 给出一个\(n(n\leq10^5)\)的序列\(\{a_n\}(\Sigma a_i\leq10^6)\),求该数列所有连续和的异或和. Solution 线段 ...

  3. 洛谷——P3909 异或之积

    P3909 异或之积 题目描述 对于A_1,A_2,A_3,\cdots,A_NA1​,A2​,A3​,⋯,AN​,求 (6\times \sum_{i=1}^N\sum_{j=i+1}^N\sum_ ...

  4. 洛谷——P3908 异或之和

    P3908 异或之和 题目描述 求1 \bigoplus 2 \bigoplus\cdots\bigoplus N1⨁2⨁⋯⨁N 的值. A \bigoplus BA⨁B 即AA , BB 按位异或. ...

  5. 洛谷—— P3908 异或之和

    https://www.luogu.org/problemnew/show/P3908 题目描述 求1 \bigoplus 2 \bigoplus\cdots\bigoplus N1⨁2⨁⋯⨁N 的值 ...

  6. 洛谷 P3909 异或之积 题解

    原题链接 本人看了其它解法,发现本人的解法还是 首创 ! 而且我的解法好像和 \(\times 6\) 没什么关系 -- (如果没 \(\times 6\),我没还不用算逆元) 别人的思路呢,大都是从 ...

  7. 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)

    LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...

  8. 「洛谷5283」「LOJ3048」「十二省联考2019」异或粽子【可持久化01trie+优先队列】

    题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题 ...

  9. ⌈洛谷4735⌋⌈BZOJ3261⌋最大异或和【可持久化01Trie】

    题目链接 [BZOJ传送门] [洛谷传送门] 题解 终于学会了可持久化trie树了.感觉并不是特别的难. 因为可持久化,那么我们就考虑动态开点的trie树. 都知道异或操作是有传递性的,那么我们就维护 ...

随机推荐

  1. java类加载详解

    1,类的加载过程: JVM将类加载过程分为三个步骤:装载(load),链接(link)和初始化(initialize),其中链接又分为三个步骤: 验证(varification),准备(Prepara ...

  2. bzoj2441【中山市选】小W的问题

    题目描述 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个“W”出来.具体来说,对于五个不同的点(x1, y1), (x2, y2), (x3, y3), ( ...

  3. BZOJ 3098 Hash Killer II

    3098: Hash Killer II Description 这天天气不错,hzhwcmhf神犇给VFleaKing出了一道题: 给你一个长度为N的字符串S,求有多少个不同的长度为L的子串. 子串 ...

  4. linux命令总结之dig命令

    Dig简介: Dig是一个在类Unix命令行模式下查询DNS包括NS记录,A记录,MX记录等相关信息的工具.Dig的源码是ISC BIND大包的一部分,但是大多编译和安装Bind的文档都不把它包括在内 ...

  5. IT人应当知道的10个行业小内幕

    如果你打算从事IT行业或刚进入这个行业,也许本文下面的小内幕会吓到你,因为这些事平常都不会公开讨论的.如果你是IT资深人士,或许你已经遇到其中的大部分了.如果你愿意,请一起来参与讨论吧. 这些内幕大多 ...

  6. mysql 允许远程登录

    GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '密码' WITH GRANT OPTION;flush privileges;

  7. 20155322 2016-2017-2 《Java程序设计》第7周学习总结

    20155322 2016-2017-2 <Java程序设计>第7周学习总结 教材学习内容总结 第七周学习的主要内容是课本的第十二第十三章: 第十二章主要内容: "Lambda ...

  8. C# 定时执行方法: System.Timers.Timer用法示例

    System.Timers.Timer t = new System.Timers.Timer(5000); //设置时间间隔为5秒        private void Form1_Load(ob ...

  9. HDU 4548 美素数 在线打表加数状数组

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4548 解题报告:一开始本想先打个素数表,然后每次输入L 跟R 的时候都进行暴力判断,但这题测试数据太多 ...

  10. 【leetcode 简单】 第一百一十二题 重复的子字符串

    给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成.给定的字符串只含有小写英文字母,并且长度不超过10000. 示例 1: 输入: "abab" 输出: True 解释 ...