分享一下 线性回归中 欠拟合 和 过拟合 是怎么回事~
为了解决欠拟合的情 经常要提高线性的次数建立模型拟合曲线, 次数过高会导致过拟合,次数不够会欠拟合。
再建立高次函数时候,要利用多项式特征生成器 生成训练数据。
下面把整个流程展示一下
模拟了一个预测蛋糕价格的从欠拟合到过拟合的过程 git: https://github.com/linyi0604/MachineLearning 在做线性回归预测时候,为了提高模型的泛化能力,经常采用多次线性函数建立模型 f = k*x + b 一次函数
f = a*x^2 + b*x + w 二次函数
f = a*x^3 + b*x^2 + c*x + w 三次函数
。。。 泛化:
对未训练过的数据样本进行预测。 欠拟合:
由于对训练样本的拟合程度不够,导致模型的泛化能力不足。 过拟合:
训练样本拟合非常好,并且学习到了不希望学习到的特征,导致模型的泛化能力不足。 在建立超过一次函数的线性回归模型之前,要对默认特征生成多项式特征再输入给模型
  poly2 = PolynomialFeatures(degree=2)    # 2次多项式特征生成器
  x_train_poly2 = poly2.fit_transform(x_train)

下面模拟 根据蛋糕的直径大小 预测蛋糕价格

 from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt '''
在做线性回归预测时候,
为了提高模型的泛化能力,经常采用多次线性函数建立模型 f = k*x + b 一次函数
f = a*x^2 + b*x + w 二次函数
f = a*x^3 + b*x^2 + c*x + w 三次函数
。。。 泛化:
对未训练过的数据样本进行预测。 欠拟合:
由于对训练样本的拟合程度不够,导致模型的泛化能力不足。 过拟合:
训练样本拟合非常好,并且学习到了不希望学习到的特征,导致模型的泛化能力不足。 在建立超过一次函数的线性回归模型之前,要对默认特征生成多项式特征再输入给模型 下面模拟 根据蛋糕的直径大小 预测蛋糕价格 ''' # 样本的训练数据,特征和目标值
x_train = [[6], [8], [10], [14], [18]]
y_train = [[7], [9], [13], [17.5], [18]] # 一次线性回归的学习与预测
# 线性回归模型 学习
regressor = LinearRegression()
regressor.fit(x_train, y_train)
# 画出一次线性回归的拟合曲线
xx = np.linspace(0, 25, 100) # 0到16均匀采集100个点做x轴
xx = xx.reshape(xx.shape[0], 1)
yy = regressor.predict(xx) # 计算每个点对应的y
plt.scatter(x_train, y_train) # 画出训练数据的点
plt1, = plt.plot(xx, yy, label="degree=1")
plt.axis([0, 25, 0, 25])
plt.xlabel("Diameter")
plt.ylabel("Price")
plt.legend(handles=[plt1])
plt.show()

一次线性函数拟合曲线的结果,是欠拟合的情况:

下面进行建立2次线性回归模型进行预测:

 # 2次线性回归进行预测
poly2 = PolynomialFeatures(degree=2) # 2次多项式特征生成器
x_train_poly2 = poly2.fit_transform(x_train)
# 建立模型预测
regressor_poly2 = LinearRegression()
regressor_poly2.fit(x_train_poly2, y_train)
# 画出2次线性回归的图
xx_poly2 = poly2.transform(xx)
yy_poly2 = regressor_poly2.predict(xx_poly2)
plt.scatter(x_train, y_train)
plt1, = plt.plot(xx, yy, label="Degree1")
plt2, = plt.plot(xx, yy_poly2, label="Degree2")
plt.axis([0, 25, 0, 25])
plt.xlabel("Diameter")
plt.ylabel("Price")
plt.legend(handles=[plt1, plt2])
plt.show()
# 输出二次回归模型的预测样本评分
print("二次线性模型在训练数据上得分:", regressor_poly2.score(x_train_poly2, y_train)) # 0.9816421639597427

二次线性回归模型拟合的曲线:

拟合程度明显比1次线性拟合的要好

下面进行4次线性回归模型:

 # 进行四次线性回归模型拟合
poly4 = PolynomialFeatures(degree=4) # 4次多项式特征生成器
x_train_poly4 = poly4.fit_transform(x_train)
# 建立模型预测
regressor_poly4 = LinearRegression()
regressor_poly4.fit(x_train_poly4, y_train)
# 画出2次线性回归的图
xx_poly4 = poly4.transform(xx)
yy_poly4 = regressor_poly4.predict(xx_poly4)
plt.scatter(x_train, y_train)
plt1, = plt.plot(xx, yy, label="Degree1")
plt2, = plt.plot(xx, yy_poly2, label="Degree2")
plt4, = plt.plot(xx, yy_poly4, label="Degree2")
plt.axis([0, 25, 0, 25])
plt.xlabel("Diameter")
plt.ylabel("Price")
plt.legend(handles=[plt1, plt2, plt4])
plt.show()
# 输出二次回归模型的预测样本评分
print("四次线性训练数据上得分:", regressor_poly4.score(x_train_poly4, y_train)) # 1.0

四次线性模型预测准确率为百分之百, 但是看一下拟合曲线,明显存在不合逻辑的预测曲线,

在样本点之外的情况,可能预测的非常不准确,这种情况为过拟合

之前我们一直在展示在训练集合上获得的模型评分,次数越高的模型,训练拟合越好。

下面查看一组测试数据进行预测的得分情况:

 # 准备测试数据
x_test = [[6], [8], [11], [16]]
y_test = [[8], [12], [15], [18]]
print("一次线性模型在测试集合上得分:", regressor.score(x_test, y_test)) # 0.809726797707665
x_test_poly2 = poly2.transform(x_test)
print("二次线性模型在测试集合上得分:", regressor_poly2.score(x_test_poly2, y_test)) # 0.8675443656345054
x_test_poly4 = poly4.transform(x_test)
print("四次线性模型在测试集合上得分:", regressor_poly4.score(x_test_poly4, y_test)) # 0.8095880795746723

会发现,二次模型在预测集合上表现最好,四次模型表现反而不好!

这就是由于对训练数据学习的太过分,学习到了不重要的东西,反而导致预测不准确。


机器学习之路:python 多项式特征生成PolynomialFeatures 欠拟合与过拟合的更多相关文章

  1. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  2. 机器学习之路--Python

    常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...

  3. 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价

    python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...

  4. 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

    python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...

  5. 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存

    使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...

  6. 机器学习基础:(Python)训练集测试集分割与交叉验证

    在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常 ...

  7. 一个完整的机器学习项目在Python中演练(三)

    大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习.但是,实际情况往往是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中.就像你的脑海中已经有了一块块"拼 ...

  8. 机器学习算法与Python实践之(四)支持向量机(SVM)实现

    机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...

  9. 机器学习算法与Python实践之(三)支持向量机(SVM)进阶

    机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...

随机推荐

  1. [SDOI2010]外星千足虫 题解 高斯消元+bitset简介

    高斯消元 + bitset 简介: 高斯消元其实就是以加减消元为核心求唯一解.这道题还是比较裸的,可以快速判断出来.我们将每一只虫子看作一个未知数,这样根据它给出的 m 组方程我们可以高斯消元得出每一 ...

  2. 【译】第十三篇 Integration Services:SSIS变量

    本篇文章是Integration Services系列的第十三篇,详细内容请参考原文. 简介在前一篇我们结合了之前所学的冒泡.日志记录.父子模式创建一个自定义的SSIS包日志记录模式.在这一篇,我们将 ...

  3. 关于在函数中使用Array.prototype.slice.call而不是直接用slice

    arguments是每个函数在运行的时候自动获得的一个近似数组的对象(除了length外没有其他属性),这个arguments对象其实并不是Array,所以没有slice方法. Array.proto ...

  4. [转]QVector与QByteArray——Qt的写时复制(copy on write)技术

    我们在之前的博文QVector的内存分配策略与再谈QVector与std::vector——使用装饰者让std::vector支持连续赋值中简单聊了聊QVector内存分配和赋值方面的一点东西,今天接 ...

  5. HttpClient使用

    1.HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的.最新的.功能丰富的支持 HTTP 协议的客户端编程工具包 2.主要的功能 (1)实现了所有 H ...

  6. linux cpu、内存、硬盘空间查询

    [CPU] 算式: CPU总核数 = 物理CPU个数 * 每颗物理CPU的核数 总逻辑CPU数 = 物理CPU个数 * 每颗物理CPU的核数 * 超线程数 #查看CPU型号 cat /proc/cpu ...

  7. C# Guid 16位 唯一

    public static class GuidExtentions { /// <summary> /// 根据GUID获取16位的唯一字符串 /// </summary> ...

  8. 学习总结——JMeter做http接口功能测试

    JMeter对各种类型接口的测试 默认做接口测试前,已经给出明确的接口文档(如,http://test.nnzhp.cn/wiki/index.php?doc-view-59):本地配好了JMeter ...

  9. jQuery选择器详解及实例---《转载》

    选择器是jQuery最基础的东西,本文中列举的选择器基本上囊括了所有的jQuery选择器,也许各位通过这篇文章能够加深对jQuery选择器的理解,它们本身用法就非常简单,我更希望的是它能够提升个人编写 ...

  10. Selenium_多线程执行测试用例

    多线程执行测试用例 这里以百度搜索为例,通过不同的浏览器来启动不同的线程. #!/usr/bin/env python # _*_ coding:utf-8 _*_ __author__ = 'Yin ...