机器学习之路:python 多项式特征生成PolynomialFeatures 欠拟合与过拟合
分享一下 线性回归中 欠拟合 和 过拟合 是怎么回事~
为了解决欠拟合的情 经常要提高线性的次数建立模型拟合曲线, 次数过高会导致过拟合,次数不够会欠拟合。
再建立高次函数时候,要利用多项式特征生成器 生成训练数据。
下面把整个流程展示一下
模拟了一个预测蛋糕价格的从欠拟合到过拟合的过程 git: https://github.com/linyi0604/MachineLearning 在做线性回归预测时候,为了提高模型的泛化能力,经常采用多次线性函数建立模型 f = k*x + b 一次函数
f = a*x^2 + b*x + w 二次函数
f = a*x^3 + b*x^2 + c*x + w 三次函数
。。。 泛化:
对未训练过的数据样本进行预测。 欠拟合:
由于对训练样本的拟合程度不够,导致模型的泛化能力不足。 过拟合:
训练样本拟合非常好,并且学习到了不希望学习到的特征,导致模型的泛化能力不足。 在建立超过一次函数的线性回归模型之前,要对默认特征生成多项式特征再输入给模型
poly2 = PolynomialFeatures(degree=2) # 2次多项式特征生成器
x_train_poly2 = poly2.fit_transform(x_train)
下面模拟 根据蛋糕的直径大小 预测蛋糕价格
from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt '''
在做线性回归预测时候,
为了提高模型的泛化能力,经常采用多次线性函数建立模型 f = k*x + b 一次函数
f = a*x^2 + b*x + w 二次函数
f = a*x^3 + b*x^2 + c*x + w 三次函数
。。。 泛化:
对未训练过的数据样本进行预测。 欠拟合:
由于对训练样本的拟合程度不够,导致模型的泛化能力不足。 过拟合:
训练样本拟合非常好,并且学习到了不希望学习到的特征,导致模型的泛化能力不足。 在建立超过一次函数的线性回归模型之前,要对默认特征生成多项式特征再输入给模型 下面模拟 根据蛋糕的直径大小 预测蛋糕价格 ''' # 样本的训练数据,特征和目标值
x_train = [[6], [8], [10], [14], [18]]
y_train = [[7], [9], [13], [17.5], [18]] # 一次线性回归的学习与预测
# 线性回归模型 学习
regressor = LinearRegression()
regressor.fit(x_train, y_train)
# 画出一次线性回归的拟合曲线
xx = np.linspace(0, 25, 100) # 0到16均匀采集100个点做x轴
xx = xx.reshape(xx.shape[0], 1)
yy = regressor.predict(xx) # 计算每个点对应的y
plt.scatter(x_train, y_train) # 画出训练数据的点
plt1, = plt.plot(xx, yy, label="degree=1")
plt.axis([0, 25, 0, 25])
plt.xlabel("Diameter")
plt.ylabel("Price")
plt.legend(handles=[plt1])
plt.show()
一次线性函数拟合曲线的结果,是欠拟合的情况:

下面进行建立2次线性回归模型进行预测:
# 2次线性回归进行预测
poly2 = PolynomialFeatures(degree=2) # 2次多项式特征生成器
x_train_poly2 = poly2.fit_transform(x_train)
# 建立模型预测
regressor_poly2 = LinearRegression()
regressor_poly2.fit(x_train_poly2, y_train)
# 画出2次线性回归的图
xx_poly2 = poly2.transform(xx)
yy_poly2 = regressor_poly2.predict(xx_poly2)
plt.scatter(x_train, y_train)
plt1, = plt.plot(xx, yy, label="Degree1")
plt2, = plt.plot(xx, yy_poly2, label="Degree2")
plt.axis([0, 25, 0, 25])
plt.xlabel("Diameter")
plt.ylabel("Price")
plt.legend(handles=[plt1, plt2])
plt.show()
# 输出二次回归模型的预测样本评分
print("二次线性模型在训练数据上得分:", regressor_poly2.score(x_train_poly2, y_train)) # 0.9816421639597427
二次线性回归模型拟合的曲线:
拟合程度明显比1次线性拟合的要好

下面进行4次线性回归模型:
# 进行四次线性回归模型拟合
poly4 = PolynomialFeatures(degree=4) # 4次多项式特征生成器
x_train_poly4 = poly4.fit_transform(x_train)
# 建立模型预测
regressor_poly4 = LinearRegression()
regressor_poly4.fit(x_train_poly4, y_train)
# 画出2次线性回归的图
xx_poly4 = poly4.transform(xx)
yy_poly4 = regressor_poly4.predict(xx_poly4)
plt.scatter(x_train, y_train)
plt1, = plt.plot(xx, yy, label="Degree1")
plt2, = plt.plot(xx, yy_poly2, label="Degree2")
plt4, = plt.plot(xx, yy_poly4, label="Degree2")
plt.axis([0, 25, 0, 25])
plt.xlabel("Diameter")
plt.ylabel("Price")
plt.legend(handles=[plt1, plt2, plt4])
plt.show()
# 输出二次回归模型的预测样本评分
print("四次线性训练数据上得分:", regressor_poly4.score(x_train_poly4, y_train)) # 1.0
四次线性模型预测准确率为百分之百, 但是看一下拟合曲线,明显存在不合逻辑的预测曲线,
在样本点之外的情况,可能预测的非常不准确,这种情况为过拟合

之前我们一直在展示在训练集合上获得的模型评分,次数越高的模型,训练拟合越好。
下面查看一组测试数据进行预测的得分情况:
# 准备测试数据
x_test = [[6], [8], [11], [16]]
y_test = [[8], [12], [15], [18]]
print("一次线性模型在测试集合上得分:", regressor.score(x_test, y_test)) # 0.809726797707665
x_test_poly2 = poly2.transform(x_test)
print("二次线性模型在测试集合上得分:", regressor_poly2.score(x_test_poly2, y_test)) # 0.8675443656345054
x_test_poly4 = poly4.transform(x_test)
print("四次线性模型在测试集合上得分:", regressor_poly4.score(x_test_poly4, y_test)) # 0.8095880795746723
会发现,二次模型在预测集合上表现最好,四次模型表现反而不好!
这就是由于对训练数据学习的太过分,学习到了不重要的东西,反而导致预测不准确。
机器学习之路:python 多项式特征生成PolynomialFeatures 欠拟合与过拟合的更多相关文章
- 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...
- 机器学习之路--Python
常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...
- 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价
python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...
- 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价
python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...
- 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存
使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...
- 机器学习基础:(Python)训练集测试集分割与交叉验证
在上一篇关于Python中的线性回归的文章之后,我想再写一篇关于训练测试分割和交叉验证的文章.在数据科学和数据分析领域中,这两个概念经常被用作防止或最小化过度拟合的工具.我会解释当使用统计模型时,通常 ...
- 一个完整的机器学习项目在Python中演练(三)
大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习.但是,实际情况往往是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中.就像你的脑海中已经有了一块块"拼 ...
- 机器学习算法与Python实践之(四)支持向量机(SVM)实现
机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习算法与Python实践之(三)支持向量机(SVM)进阶
机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...
随机推荐
- input新类型详解
http://www.webhek.com/post/html5-input-type.html
- llg的农场(farm)
评测传送门 [题目描述] llg 是一名快乐的农民,他拥有一个很大的农场,并且种了各种各样的瓜果蔬菜,到了每年秋天,他就可以把所有蔬菜水果卖到市场上,这样他就可以获利.但今年他遇到了一个难题——有许多 ...
- c# 超长字符串截取固定长度后显示...(超长后面显示点点点) 通用方法
通用方法: 此方法是采用unicode编码方式,一个汉字为2个字节,一个数字or字母是1个字节,此方法传入的第二个长度参数是unicode长度. 所以不用考虑截取的字符串是汉字还是英文字母的问题,参数 ...
- [转]ROS(Robot Operating System)常用环境变量介绍
本文简单介绍ROS系统中常用的环境变量用途及设置方式.ROS系统环境中除了必须配置的环境变量以外,其他的也是十分有用,通过修改变量路径,可以设置ROS系统中log文件存放路径,单元测试结果存放路径等. ...
- 怎么样通过编写Python小程序来统计测试脚本的关键字
怎么样通过编写Python小程序来统计测试脚本的关键字 通常自动化测试项目到了一定的程序,编写的测试代码自然就会很多,如果很早已经编写的测试脚本现在某些基础函数.业务函数需要修改,那么势必要找出那些引 ...
- USB descriptor【转】
struct usb_device_descriptor { __u8 bLength;//设备描述符的字节数大小,为0x12 __u8 bDescriptorType;//描述符类型编号,为0x01 ...
- 华硕笔记本U盘重装系统
ESC启动把Secure Boot改为Disabled,Launch CSM改为Enabled,然后重新选择不带UEFI字样的U盘启动项.然后就可以找到U盘进入PE
- ArcGIS RunTime Sdk +WPF 基础地图显示
1 简单的地图展示 ArcGISRunTime 的平面地图展示主要依赖MapView这个控件,MapView是地图的容器,Map主要是图层的集合 (注:三维场景的显示主要依赖SceneView这个控件 ...
- docker stack 部署 mysql 5.6
=============================================== 2018/7/1_第1次修改 ccb_warlock === ...
- python类中的私有方法
假设有如下一个python类: class Foo(object): def __a(self): print "Bet you can't see me..." def bar( ...