%pylab inline
import networkx as nx
Populating the interactive namespace from numpy and matplotlib
G = nx.Graph()
G.add_node(1)
G.add_nodes_from([2,3])
G.add_edge(1,2)
e = (2,3)
G.add_edge(*e) # Unpacking tuple
G.add_edges_from([(1,2),(1,3)])
nx.draw(G)

print(G.number_of_nodes())
print(G.number_of_edges())
3
3
G[1]
AtlasView({2: {}, 3: {}})
G[1][2]['weight'] = 10
G[1]
AtlasView({2: {'weight': 10}, 3: {}})
FG = nx.Graph()
FG.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
for n,nbrs in FG.adjacency():
for nbr,eattr in nbrs.items():
data=eattr['weight']
if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))
(1, 2, 0.125)
(2, 1, 0.125)
(3, 4, 0.375)
(4, 3, 0.375)
print(list(FG.adjacency()))
type(FG.adjacency())
[(1, {2: {'weight': 0.125}, 3: {'weight': 0.75}}), (2, {1: {'weight': 0.125}, 4: {'weight': 1.2}}), (3, {1: {'weight': 0.75}, 4: {'weight': 0.375}}), (4, {2: {'weight': 1.2}, 3: {'weight': 0.375}})]

dict_itemiterator
# Convenient access to all edges is achieved with the edges method.
for (u,v,d) in FG.edges(data='weight'):
if d<0.5: print('(%d, %d, %.3f)'%(n,nbr,d))
(4, 3, 0.125)
(4, 3, 0.375)

添加 graphs, nodes, 和 edges 的属性

属性 (Attributes) 有 weights, labels, colors, 或者你喜欢的如何 Python 对象均可添加到 graphs, nodes, 或者 edges 中.

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but attributes can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named G.graph, G.node and G.edge for a graph G.

Graph 属性

在创建新图的时候分配图属性.

G = nx.Graph(day="Friday")
G.graph
{'day': 'Friday'}

或者,你可以在之后修改:

G.graph['day']='Monday'
G.graph
{'day': 'Monday'}

Node 属性

使用 add_node(), add_nodes_from() 或者 G.node 添加节点属性.

G.add_node(1, time = '5pm')
G.node[1]
{'time': '5pm'}
G.add_nodes_from([3], time='2pm')
G.node[3]
{'time': '2pm'}
G.node[1]['room'] = 714
G.node[1]
{'time': '5pm', 'room': 714}
G.nodes(data=True)
NodeDataView({1: {'time': '5pm', 'room': 714}, 3: {'time': '2pm'}})

Note that adding a node to G.node does not add it to the graph, use G.add_node() to add new nodes.

Edge 属性

使用 add_edge(), add_edges_from(), subscript notation(下标注释), 或者 G.edge 添加边属性.

G.add_edge(1, 2, weight=4.7 )
G[1][2]
{'weight': 4.7}
G.add_edges_from([(3,4),(4,5)], color='red')
G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
G[1][2]['weight'] = 4.7
G.edges(data=True)
EdgeDataView([(1, 2, {'weight': 4.7, 'color': 'blue'}), (3, 4, {'color': 'red'}), (3, 2, {'weight': 8}), (4, 5, {'color': 'red'})])

转换图为邻接矩阵

你可以使用 nx.to_numpy_matrix(G)G 转换为 numpy 矩阵. 如果是加权图,则矩阵的元素是权重值. 如果边不存在,其值则设置为 \(0\) 而不是 Infinity(无穷大). You have to manually modify those values to Infinity (float('inf'))

nx.to_numpy_matrix(G)
matrix([[0. , 0. , 4.7, 0. , 0. ],
[0. , 0. , 8. , 1. , 0. ],
[4.7, 8. , 0. , 0. , 0. ],
[0. , 1. , 0. , 0. , 1. ],
[0. , 0. , 0. , 1. , 0. ]])
nx.to_numpy_matrix(FG)
matrix([[0.   , 0.125, 0.75 , 0.   ],
[0.125, 0. , 0. , 1.2 ],
[0.75 , 0. , 0. , 0.375],
[0. , 1.2 , 0.375, 0. ]])

有向图

DiGraph 类提供了许多有向图中的额外算法,比如 DiGraph.out_edges(), DiGraph.in_degree(), DiGraph.predecessors(), DiGraph.successors()等。为了让算法可以在两类图中都可以工作,无向图中的 neighbors()degree() 分别等价于有向图中的 successors()和有向图中的 in_degree()out_degree() 的和.

DG = nx.DiGraph()
DG.add_weighted_edges_from([(1, 2, 0.5), (1, 3, 1.1), (4, 1, 2.3)])
DG.out_degree(1) # 节点 1 的出度
2
DG.out_degree(1, weight='weight')  # 节点 1 的所有出度的权值之和
1.6
list(DG.successors(1)) # 节点 1 的继承者
[2, 3]
list(DG.neighbors(1)) # 节点 1 的邻居(不包括指向节点 1 的节点)
[2, 3]

有向图与无向图的转换

H = DG.to_undirected()
# 或者
H = nx.Graph(DG)

多图(Multigraphs)

NetworkX 提供了一个类,它可以允许任何一对节点之间有多条边。类 MultiGraph 和类 MultiDiGraph 允许添加相同的边两次,这两条边可能附带不同的权值。对于有些应用程序这是非常有用的类,但是许多算法不能够很好的在这样的图中定义,比如最短路径算法,但是像 MultiGraph.degree 这种算法又可以很好的被定义。否则你应该为了很好的定义测量,而将图转化为标准的图。

MG = nx.MultiGraph()
MG.add_weighted_edges_from([(1, 2, 0.5), (1, 2, 0.75), (2, 3, 0.5)])
dict(MG.degree(weight='weight')) GG = nx.Graph()
for n, nbrs in MG.adjacency():
for nbr, edict in nbrs.items():
minvalue = min([d['weight'] for d in edict.values()])
GG.add_edge(n, nbr, weight=minvalue) nx.shortest_path(GG, 1, 3)
[1, 2, 3]

图的生成器和图的操作

除了通过节点和边生成图,也可以通过以下方法产生:

使用典型的图形操作:

  • subgraph(G, nbunch) - 产生 nbunch 节点的子图
  • union(G1,G2) - 结合图
  • disjoint_union(G1,G2) - 假设所有节点都不同,然后结合图
  • cartesian_product(G1,G2) - 返回笛卡尔乘积图
  • compose(G1,G2) - 结合两个图并表示两者共同的节点
  • complement(G) - 图 G 的补图
  • create_empty_copy(G) - 返回同一类图的无边副本
  • convert_to_undirected(G) - 返回 G 的无向图
  • convert_to_directed(G) - 返回G的有向图

调用经典的小图

petersen = nx.petersen_graph()

tutte = nx.tutte_graph()

maze = nx.sedgewick_maze_graph()

tet = nx.tetrahedral_graph()

使用一些图形生成器

K_5 = nx.complete_graph(5)

K_3_5 = nx.complete_bipartite_graph(3, 5)

barbell = nx.barbell_graph(10, 10)

lollipop = nx.lollipop_graph(10, 20)

使用随机图发生器

er = nx.erdos_renyi_graph(100, 0.15)

ws = nx.watts_strogatz_graph(30, 3, 0.1)

ba = nx.barabasi_albert_graph(100, 5)

red = nx.random_lobster(100, 0.9, 0.9)

通过读取存储在文件中的一些标准图形格式,例如边表,邻接表,GML,GraphML,pickle,LEAD或者其他的一些格式:

nx.write_gml(red,"path.to.file")

mygraph=nx.read_gml("path.to.file")

分析图

图 G 的结构可以通过各种图论的函数来分析,例如:

G = nx.Graph()
G.add_edges_from([(1, 2), (1, 3)])
G.add_node("spam") # adds node "spam"
list(nx.connected_components(G))
[{1, 2, 3}, {'spam'}]
sorted(d for n, d in G.degree())
[0, 1, 1, 2]
nx.clustering(G)
{1: 0, 2: 0, 3: 0, 'spam': 0}

返回节点属性的函数是通过返回一个以节点为键的字典来实现的:

nx.degree(G)
DegreeView({1: 2, 2: 1, 3: 1, 'spam': 0})

图算法:Algorithms

NetworkX 使用(三)的更多相关文章

  1. python下的复杂网络编程包networkx的使用(摘抄)

    原文:http://blog.sciencenet.cn/home.php?mod=space&uid=404069&do=blog&classid=141080&vi ...

  2. 网络分析之networkx(转载)

    图的类型 Graph类是无向图的基类,无向图能有自己的属性或参数,不包含重边,允许有回路,节点可以是任何hash的python对象,节点和边可以保存key/value属性对.该类的构造函数为Graph ...

  3. [译]学习IPython进行交互式计算和数据可视化(三)

    第二章 在本章中,我们将详细学习IPython相对以Python控制台带来的多种改进.特别的,我们将会进行下面的几个任务: 从IPython中使用系统shell以在shell和Python之间进行强大 ...

  4. 【转】介绍几个图论和复杂网络的程序库 —— BGL,QuickGraph,igraph和NetworkX

    原文来自:http://blog.sciencenet.cn/blog-404069-297233.html 作复杂网络研究离不开对各种实际或模拟网络的统计.计算.绘图等工作.对于一般性的工作,我们可 ...

  5. Social Network Analysis的Centrality总结,以及networkx实现EigenCentrality,PageRank和KatzCentrality的对比

    本文主要总结近期学习的Social Network Analysis(SNA)中的各种Centrality度量,我暂且翻译为中心度.本文主要是实战,理论方面几乎没有,因为对于庞大的SNA,我可能连门都 ...

  6. Python 学习 第十六篇:networkx

    networkx是Python的一个包,用于构建和操作复杂的图结构,提供分析图的算法.图是由顶点.边和可选的属性构成的数据结构,顶点表示数据,边是由两个顶点唯一确定的,表示两个顶点之间的关系.顶点和边 ...

  7. NetworkX

    常用网站: 官方文档 Github (latest development) NetworkX官方介绍: ======== NetworkX (NX) is a Python package for ...

  8. networkX用法整

    无向图,有向图,加权图等例子代码 [http://www.cnblogs.com/kaituorensheng/p/5423131.html#_label1] 数据分析学习笔记(三)-NetworkX ...

  9. python3 networkx

    一.networkx 1.用于图论和复杂网络 2.官网:http://networkx.github.io/ 3.networkx常常结合numpy等数据处理相关的库一起使用,通过matplot来可视 ...

随机推荐

  1. Web API: Client: HttpClient Message Handlers

    原文地址: http://www.asp.net/web-api/overview/web-api-clients/httpclient-message-handlers using System; ...

  2. CSS只改变背景透明度,不改变子元素透明度

    一般情况下,我们可以使用css的opcity属性改变某个元素的透明度,但是其元素下的子元素的透明度也会被改变,即使对子元素重新定义也没有用,例如: <div style="opacit ...

  3. Getting Real 摘记

    第二章 起始点 一个很好的做软件的方式就是一开始用它来解决你自己的问题.由于你自己变成了软件的目标受众因此你会知道什么是重要的什么不是.这样做下去将会是推出一个突破性产品的伟大起始点. 手头有多少钱就 ...

  4. opencv的基本数据结构(二)(转)

    转自:原文链接,以下代码.图片.内容有点改动,只为转载不降低博客内容的可阅性,版权归原作者所有. OpenCV中强大的Mat类型大家已经比较熟悉了.这里梳理一些在工程中其他经常用到的几种基本数据类型. ...

  5. hdu 1495 非常可乐 (广搜)

    题目链接 Problem Description 大家一定觉的运动以后喝可乐是一件很惬意的事情,但是seeyou却不这么认为.因为每次当seeyou买了可乐以后,阿牛就要求和seeyou一起分享这一瓶 ...

  6. summernote 文本编辑器使用时,选择上传图片、链接、录像时,弹出的对话框被遮挡住

    更多内容推荐微信公众号,欢迎关注: 即问题如下链接内的情况: http://bbs.csdn.net/topics/392004332 这个一般属于CSS中样式出现了问题,可以在点开的时候,F12查看 ...

  7. javascript 中检测数据类型的方法

    typeof 检测数据类型 javascript 中检测数据类型有好几种,其中最简单的一种是 typeof 方式.typeof 方法返回的结果是一个字符串.typeof 的用法如下: typeof v ...

  8. 自然语言处理词向量模型-word2vec

    自然语言处理与深度学习: 语言模型: N-gram模型: N-Gram模型:在自然语言里有一个模型叫做n-gram,表示文字或语言中的n个连续的单词组成序列.在进行自然语言分析时,使用n-gram或者 ...

  9. COM组件服务访问权限

    解决办法 :添加ASP.NET权限访问COM组件服务. IIS 5 上为 {MACHINE}\ASPNET IIS 6 和 IIS 7 上为网络服务:NETWORK SERVICE IIS 7.5 上 ...

  10. gitHub 迁移到gitlab上

    GitHub 迁移到 GitLab 上 第一步在github上生成 token 地址 https://blog.csdn.net/u014175572/article/details/55510825 ...