原文地址:http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_fast/py_fast.html#fast-algorithm-for-corner-detection

目标


  • 理解FAST算法的基本原理
  • 使用OpenCV的FAST函数进行角点(corners)检测



原理


我们已知很多种特征检测的方法,而且它们其中很多效果都非常不错。但是,当从一个实时运行的程序角度出发,它们还不够快。一个最好的例子就是SLAM(Simultaneous Localization and Mapping)移动机器人,它的可计算资源是受限的。

作为上述问题的一个解决方法,FAST(Features from Accelerated Segment Test)算法由Edward Rosten 和 Tom Drummond在他们2006年的论文“Machine
learning for high-speed corner detection”
(在2010年再次被修订)中被提出。下面是该算法的一个基本总结。你可以参见原论文去学习更多的细节(下面所有的图片是从原论文中提取的)。



使用FAST进行特征检测


  1. 从图片中选取一个像素点,下面我们将判断它是否是一个特征点。我们首先把它的密度(即像素值)设为 
  2. 设定一个合适的阙值 
  3. 考虑该像素点周围的16个像素。(见下图)

  4. 现在,如果在这个大小为16个像素的圆上有 个连续的像素点,它们的像素值要么都比大,要么都比 小,那么它就是一个角点。(如上图中白色虚线所示)。 这里被设定为12。
  5. 我们现在应该提出一个高效的测试,来快速排除一大部分是非角点的点。该测试仅仅检查在位置1、9、5和13四个位置的像素(首先检查1和9,看它们是否亮于或暗于阙值。如果是,再检查5和13)。如果是一个角点,那么上述四个像素点中至少有3个应该必须都大于或者小于 (因为若是一个角点,超过四分之三个圆的部分应该满足判断条件,半圆比包含上述某三个点)。如果都不满足,那么不可能是一个角点。完整的分段测试可以被用于接受的所有候选点,通过检测圆上的所有点。这种检测有很好的性能,但是有一些缺点:

    1. 当n < 12时不能拒绝许多候选点。

    2. 检测出来的角点不是最优的,这是因为它的效率是依靠角点外形的排列和分布的。

    3. 

    4. 相邻的多个特征点会被检测到。

前三个问题可以使用机器学习的方法解决。最后一个可以使用non-maximal
suppression。



机器学习


  1. 选择一个图片集合进行学习(最好是来自于目标应用定义域)。
  2. 在每一张图上运行FAST算法,找到特征点。
  3. 对于每个特征点,存储它周围的16个像素点到一个vector中。为所有的图片做同样的事,得到它们所有特征点的vector

  4. 这16个像素中的每一个像素(假设为),可以有下面三种状态中的一种:

  5. 依靠这些状态,特征向量被划分为3个子集,
  6. 定义一个新的布尔变量,。如果 是一个角点,那些为真;否则为假。
  7. 使用ID3算法(决策树分类器)来查询每一个子集。
  8. 递归计算所有的子集直到它的嫡为0。
  9. 被创建的决策树就被用于其他图片的fast检测。


non-maximal suppression


从邻近的位置选取了多个特征点是另一个问题。我们可以使用non-maximal
suppression来解决。

  1. 为每一个检测到的特征点计算它的分数函数(score function), 。 是和它周围16个像素点的绝对偏差的和。
  2. 考虑两个相邻的特征点,并比较它们的值。
  3. 值较低的点将会被剔除。


总结


FAST算法比其他已知的角点检测法要快很多倍。
但是当图片的噪点较多时,它的健壮性并不好。这依靠一个阙值。



OpenCV中的FAST特征检测


和OpenCV中其他特征检测器的调用相同。如果你想,你可以指定一个阙值,或者决定是否使用non-maximal suppression来判断邻近特征点。

对于相邻特征点,OpenCV定义了三个flags:

  • cv2.FAST_FEATURE_DETECTOR_TYPE_5_8
  • cv2.FAST_FEATURE_DETECTOR_TYPE_7_12
  • cv2.FAST_FEATURE_DETECTOR_TYPE_9_16
下面是一个简单的示例代码。
import numpy as np
import cv2
from matplotlib import pyplot as plt img = cv2.imread('simple.jpg',0) # Initiate FAST object with default values
fast = cv2.FastFeatureDetector() # find and draw the keypoints
kp = fast.detect(img,None)
img2 = cv2.drawKeypoints(img, kp, color=(255,0,0)) # Print all default params
print "Threshold: ", fast.getInt('threshold')
print "nonmaxSuppression: ", fast.getBool('nonmaxSuppression')
print "neighborhood: ", fast.getInt('type')
print "Total Keypoints with nonmaxSuppression: ", len(kp) cv2.imwrite('fast_true.png',img2) # Disable nonmaxSuppression
fast.setBool('nonmaxSuppression',0)
kp = fast.detect(img,None) print "Total Keypoints without nonmaxSuppression: ", len(kp) img3 = cv2.drawKeypoints(img, kp, color=(255,0,0)) cv2.imwrite('fast_false.png',img3)

下面是测试结果。左边是使用了nonmaxSuppression的FAST,右边则没有使用。






【OpenCV文档】用于角点检测的Fast算法的更多相关文章

  1. OpenCV-Python 用于角点检测的FAST算法 | 四十一

    目标 在本章中, 我们将了解FAST算法的基础知识. 我们将使用OpenCV功能对FAST算法进行探索. 理论 我们看到了几个特征检测器,其中很多真的很棒.但是,从实时应用程序的角度来看,它们不够快. ...

  2. opencv笔记6:角点检测

    time:2015年10月09日 星期五 23时11分58秒 # opencv笔记6:角点检测 update:从角点检测,学习图像的特征,这是后续图像跟踪.图像匹配的基础. 角点检测是什么鬼?前面一篇 ...

  3. OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...

  4. cv2.cornerHarris()详解 python+OpenCV 中的 Harris 角点检测

    参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014. ...

  5. SLAM: 图像角点检测的Fast算法(OpenCV文档)

    官方链接:http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_fast/py_fast.html#fast-algorithm- ...

  6. 深入学习OpenCV文档扫描及OCR识别(文档扫描,图像矫正,透视变换,OCR识别)

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 下面 ...

  7. Opencv学习笔记------Harris角点检测

    image算法测试iteratoralgorithmfeatures 原创文章,转载请注明出处:http://blog.csdn.net/crzy_sparrow/article/details/73 ...

  8. 编译OpenCV文档

    概述 使用OpenCV的过程中经常查看文档,每次都去官网查看,不过国内访问速度很慢,有一份本地的文档就好了.本文列出了在Linux(Fedora)系统上从OpenCV源码编译出documentatio ...

  9. OpenCV教程(43) harris角的检测(1)

          计算机视觉中,我们经常要匹配两幅图像.匹配的的方式就是通过比较两幅图像中的公共特征,比如边,角,以及图像块(blob)等,来对两幅图像进行匹配.      相对于边,角更适合描述图像特征, ...

随机推荐

  1. 数据结构之堆Heap

    1. 概述 堆(也叫优先队列),是一棵完全二叉树,它的特点是父节点的值大于(小于)两个子节点的值(分别称为大顶堆和小顶堆).它常用于管理算法执行过程中的信息,应用场景包括堆排序,优先队列等. 2. 堆 ...

  2. UML总结4---UML九种图关系说明

    转自:http://blog.csdn.NET/chenyujing1234/article/details/8173519 UML中包括九种图:用例图.类图.对象图.状态图.时序图.协作图.活动图. ...

  3. li标签中list-style-image如何居中

    使用list-style-image设置了一个列表项的小图标时,一直不能让图标居中的显示. 解决办法是:使用ul li的backgrou-image(背景图片)来设置. 代码如下: ul li{ he ...

  4. 记录 Python3 安装 Scrapy 遇到的问题

    开发环境:Windows 10 + Python 3 使用 pip 去安装 Scrapy,  pip install scrapy , 报了一个错误. 原因:加 --user 的作用是显式指定安装在用 ...

  5. Python中strip()、lstrip()、rstrip()用法详解

    Python中有三个去除头尾字符.空白符的函数,它们依次为: strip: 用来去除头尾字符.空白符(包括\n.\r.\t.' ',即:换行.回车.制表符.空格)lstrip:用来去除开头字符.空白符 ...

  6. oracle查询相关语句

    1,查询表空间使用情况select a.a1 表空间名称,c.c2 类型,c.c3 区管理,b.b2/1024/1024 表空间大小M,(b.b2-a.a2)/1024/1024 已使用M,subst ...

  7. Bootstrap3 栅格系统-列偏移

    使用 .col-md-offset-* 类可以将列向右侧偏移.这些类实际是通过使用 * 选择器为当前元素增加了左侧的边距(margin).例如,.col-md-offset-4 类将 .col-md- ...

  8. Linux文件格式化与相关处理及sed工具

    http://blog.csdn.net/pipisorry/article/details/52564957 geditor, sed, ed, awk, Emacs 文本处理工具 [Linux S ...

  9. 自定义progressDialog(数据加载框)的实现

    大家在开发客户端时基本上都需要获取数据,在获取数据时会有一个等待状态,这时我们可以利用系统自带的progressDialog来向用户展示"数据正在加载中..."等等,但有时我们会觉 ...

  10. Excel 数据验证宏

    Sub 宏1() ' ' 宏1 宏 ' ' With Selection.Validation .Delete .Add Type:=xlValidateList, AlertStyle:=xlVal ...