import sys
import codecs
import tensorflow as tf # 1.参数设置。
# 读取checkpoint的路径。9000表示是训练程序在第9000步保存的checkpoint。
CHECKPOINT_PATH = "F:\\temp\\seq2seq_ckpt-9000" # 模型参数。必须与训练时的模型参数保持一致。
HIDDEN_SIZE = 1024 # LSTM的隐藏层规模。
NUM_LAYERS = 2 # 深层循环神经网络中LSTM结构的层数。
SRC_VOCAB_SIZE = 10000 # 源语言词汇表大小。
TRG_VOCAB_SIZE = 4000 # 目标语言词汇表大小。
SHARE_EMB_AND_SOFTMAX = True # 在Softmax层和词向量层之间共享参数。 # 词汇表文件
SRC_VOCAB = "F:\\TensorFlowGoogle\\201806-github\\TensorFlowGoogleCode\\Chapter09\\en.vocab"
TRG_VOCAB = "F:\\TensorFlowGoogle\\201806-github\\TensorFlowGoogleCode\\Chapter09\\zh.vocab" # 词汇表中<sos>和<eos>的ID。在解码过程中需要用<sos>作为第一步的输入,并将检查
# 是否是<eos>,因此需要知道这两个符号的ID。
SOS_ID = 1
EOS_ID = 2
# 2.定义NMT模型和解码步骤。
# 定义NMTModel类来描述模型。
class NMTModel(object):
# 在模型的初始化函数中定义模型要用到的变量。
def __init__(self):
# 定义编码器和解码器所使用的LSTM结构。
self.enc_cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE)for _ in range(NUM_LAYERS)])
self.dec_cell = tf.nn.rnn_cell.MultiRNNCell([tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE) for _ in range(NUM_LAYERS)]) # 为源语言和目标语言分别定义词向量。
self.src_embedding = tf.get_variable("src_emb", [SRC_VOCAB_SIZE, HIDDEN_SIZE])
self.trg_embedding = tf.get_variable("trg_emb", [TRG_VOCAB_SIZE, HIDDEN_SIZE]) # 定义softmax层的变量
if SHARE_EMB_AND_SOFTMAX:
self.softmax_weight = tf.transpose(self.trg_embedding)
else:
self.softmax_weight = tf.get_variable("weight", [HIDDEN_SIZE, TRG_VOCAB_SIZE])
self.softmax_bias = tf.get_variable("softmax_bias", [TRG_VOCAB_SIZE]) def inference(self, src_input):
# 虽然输入只有一个句子,但因为dynamic_rnn要求输入是batch的形式,因此这里
# 将输入句子整理为大小为1的batch。
src_size = tf.convert_to_tensor([len(src_input)], dtype=tf.int32)
src_input = tf.convert_to_tensor([src_input], dtype=tf.int32)
src_emb = tf.nn.embedding_lookup(self.src_embedding, src_input) # 使用dynamic_rnn构造编码器。这一步与训练时相同。
with tf.variable_scope("encoder"):
enc_outputs, enc_state = tf.nn.dynamic_rnn(self.enc_cell, src_emb, src_size, dtype=tf.float32) # 设置解码的最大步数。这是为了避免在极端情况出现无限循环的问题。
MAX_DEC_LEN=100 with tf.variable_scope("decoder/rnn/multi_rnn_cell"):
# 使用一个变长的TensorArray来存储生成的句子。
init_array = tf.TensorArray(dtype=tf.int32, size=0,dynamic_size=True, clear_after_read=False)
# 填入第一个单词<sos>作为解码器的输入。
init_array = init_array.write(0, SOS_ID)
# 构建初始的循环状态。循环状态包含循环神经网络的隐藏状态,保存生成句子的
# TensorArray,以及记录解码步数的一个整数step。
init_loop_var = (enc_state, init_array, 0) # tf.while_loop的循环条件:
# 循环直到解码器输出<eos>,或者达到最大步数为止。
def continue_loop_condition(state, trg_ids, step):
return tf.reduce_all(tf.logical_and(tf.not_equal(trg_ids.read(step), EOS_ID),tf.less(step, MAX_DEC_LEN-1))) def loop_body(state, trg_ids, step):
# 读取最后一步输出的单词,并读取其词向量。
trg_input = [trg_ids.read(step)]
trg_emb = tf.nn.embedding_lookup(self.trg_embedding,trg_input)
# 这里不使用dynamic_rnn,而是直接调用dec_cell向前计算一步。
dec_outputs, next_state = self.dec_cell.call(state=state, inputs=trg_emb)
# 计算每个可能的输出单词对应的logit,并选取logit值最大的单词作为
# 这一步的而输出。
output = tf.reshape(dec_outputs, [-1, HIDDEN_SIZE])
logits = (tf.matmul(output, self.softmax_weight)+ self.softmax_bias)
next_id = tf.argmax(logits, axis=1, output_type=tf.int32)
# 将这一步输出的单词写入循环状态的trg_ids中。
trg_ids = trg_ids.write(step+1, next_id[0])
return next_state, trg_ids, step+1 # 执行tf.while_loop,返回最终状态。
state, trg_ids, step = tf.while_loop(continue_loop_condition, loop_body, init_loop_var)
return trg_ids.stack()
def main():
# 定义训练用的循环神经网络模型。
with tf.variable_scope("nmt_model", reuse=None):
model = NMTModel() # 定义个测试句子。
test_en_text = "This is a test . <eos>"
print(test_en_text) # 根据英文词汇表,将测试句子转为单词ID。
with codecs.open(SRC_VOCAB, "r", "utf-8") as f_vocab:
src_vocab = [w.strip() for w in f_vocab.readlines()]
src_id_dict = dict((src_vocab[x], x) for x in range(len(src_vocab)))
test_en_ids = [(src_id_dict[token] if token in src_id_dict else src_id_dict['<unk>'])
for token in test_en_text.split()]
print(test_en_ids) # 建立解码所需的计算图。
output_op = model.inference(test_en_ids)
sess = tf.Session()
saver = tf.train.Saver()
saver.restore(sess, CHECKPOINT_PATH) # 读取翻译结果。
output_ids = sess.run(output_op)
print(output_ids) # 根据中文词汇表,将翻译结果转换为中文文字。
with codecs.open(TRG_VOCAB, "r", "utf-8") as f_vocab:
trg_vocab = [w.strip() for w in f_vocab.readlines()]
output_text = ''.join([trg_vocab[x] for x in output_ids]) # 输出翻译结果。
print(output_text.encode('utf8').decode(sys.stdout.encoding))
sess.close() if __name__ == "__main__":
main()

吴裕雄--天生自然 pythonTensorFlow自然语言处理:Seq2Seq模型--测试的更多相关文章

  1. 吴裕雄--天生自然 pythonTensorFlow自然语言处理:Seq2Seq模型--训练

    import tensorflow as tf # 1.参数设置. # 假设输入数据已经用9.2.1小节中的方法转换成了单词编号的格式. SRC_TRAIN_DATA = "F:\\Tens ...

  2. 吴裕雄--天生自然 pythonTensorFlow自然语言处理:Attention模型--训练

    import tensorflow as tf # 1.参数设置. # 假设输入数据已经转换成了单词编号的格式. SRC_TRAIN_DATA = "F:\\TensorFlowGoogle ...

  3. 吴裕雄--天生自然 pythonTensorFlow自然语言处理:Attention模型--测试

    import sys import codecs import tensorflow as tf # 1.参数设置. # 读取checkpoint的路径.9000表示是训练程序在第9000步保存的ch ...

  4. 吴裕雄--天生自然 pythonTensorFlow自然语言处理:PTB 语言模型

    import numpy as np import tensorflow as tf # 1.设置参数. TRAIN_DATA = "F:\TensorFlowGoogle\\201806- ...

  5. 吴裕雄--天生自然 pythonTensorFlow自然语言处理:文本数据预处理--生成训练文件

    import sys import codecs # 1. 参数设置 MODE = "PTB_TRAIN" # 将MODE设置为"PTB_TRAIN", &qu ...

  6. 吴裕雄--天生自然 pythonTensorFlow自然语言处理:交叉熵损失函数

    import tensorflow as tf # 1. sparse_softmax_cross_entropy_with_logits样例. # 假设词汇表的大小为3, 语料包含两个单词" ...

  7. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:循环神经网络预测正弦函数

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 定义RNN的参数. HIDDEN_SIZE = ...

  8. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集高层操作

    import tempfile import tensorflow as tf # 1. 列举输入文件. # 输入数据生成的训练和测试数据. train_files = tf.train.match_ ...

  9. 吴裕雄--天生自然 pythonTensorFlow图形数据处理:数据集基本使用方法

    import tempfile import tensorflow as tf # 1. 从数组创建数据集. input_data = [1, 2, 3, 5, 8] dataset = tf.dat ...

随机推荐

  1. docker-compose 安装 mongodb

    1. 修改 docker-compose.yml version: "2.1" services: php7.1: build: ./php image: php7.1-ext p ...

  2. 大二暑假第五周总结--开始学习Hadoop基础(四)

    简单学习MapReduce并进行WordCount实践 分布式并行编程: MapReduce设计的一个理念就是“计算向数据靠拢”,将复杂的,运行于大规模集群上的并行计算过程高度地抽象到两个函数:Map ...

  3. javascript面向对象编程的3种常见封装形式解析

    javascript如何才能脱离函数式编程,拥抱面向对象编程呢,常见的有3种形式,其它形式可以说都是这3种的变种.   1.直接定义对象直接量的形式   var Util={     getType: ...

  4. POJ 2993:Emag eht htiw Em Pleh

    Emag eht htiw Em Pleh Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64 ...

  5. 【Linux】linux磁盘管理

    在服务器管理中,我们会关心硬盘用了多少,还有多少剩余空间,哪些文件占用空间最大等等.以便我们在合适的时机为服务器添加硬盘分区以及管理磁盘文件等操作,让磁盘的利用率最大化,现在我们看下linux系统中和 ...

  6. 利用mysecureshell搭建sftp服务

    1.下载对应的mysecureshell-1.33-1.x86_64.rpm包 2.安装mysecureshell-1.33-1.x86_64.rpm 3.添加ftp用户 useradd ftp 4. ...

  7. HTML5 可缩放矢量图形(2)—SVG基础

    参考文档——权威 SVG常识 渲染顺序——后来居上:越后面的元素越可见 单位——可以指定,也可以不指定,默认px,其他:em.%.cm.mm... SVG画布——绘制图像的区域,无限大 SVG视窗—— ...

  8. 吴裕雄--天生自然MySQL学习笔记:MySQL 运算符

    要介绍 MySQL 的运算符及运算符的优先级. MySQL 主要有以下几种运算符: 算术运算符 比较运算符 逻辑运算符 位运算符 算术运算符 MySQL 支持的算术运算符包括: 在除法运算和模运算中, ...

  9. JAVA初学者——DOS命令及基本数据类型

    Hello!大家好!我是浩宇大熊猫~ 昨天看了韩顺平老师第二节视频的课,记忆尤新的是那个数据类型那一块,可是昨天感觉没掌握就没有发博客. 今天,又看了一遍,加上看了一些其他老师的,有所收获,所以分享给 ...

  10. Linux 系统查看服务器SN序列号以及服务器型号

    1.单独查看服务器的序列号 [root@localhost ~]# dmidecode -t system | grep 'Serial Number' Serial Number: 2102310Y ...