[LuoguP1025][数据加强]数的划分
Solution
参考博客:Click
题目意思非常明确了,这是一道组合数学的题目。我就直接讲dp解法了。
dp
题意可以转化为将\(n\)个苹果放进\(k\)个盒子里,并且不允许空盒。
设\(f[i][j]\)代表将\(i\)个苹果放入\(j\)个盒子中,那么我们用解决这类问题的常用方法来分析:
我们必须先保证每个盒子非空,因此在\(i\)个苹果中选出\(j\)个放入每个盒子。
此时我们剩余\(i-j\)个苹果,我们就是要往已有的一层苹果上加\(i-j\)苹果,求此时的方案数。
现在\(i-j\)个苹果可以任意分配了,也就是分成\(1\)份、\(2\)份、\(3\)份都是合法的……
得到转移方程:
\]
枚举\(i\),随后枚举\(j\),随后枚举\(k\),三层循环即可得出答案。
时间复杂度为\(O(nk^2)\),预期得分70分。
这个或许可以套树状数组优化一下求和……
那么复杂度是\(O(nk\log k)\),然而最大的范围\(nk\)达到了\(1.2\)亿的大小,再加上个\(\log\)铁定超时。
然后你可以发现:
\]
为什么会有这样的奇特之处呢?因为\(i-j\)就是\(i\)和\(j\)的差值,那么同增同减一个\(1\),dp数组的一维下标是不变的,只是二维的\(k\)会少一个\(dp[i-j][j]\),那么我们把这个加上就好了。
据此写出转移方程:
\]
两层循环即可转移,复杂度就降到\(O(nk)\)了,由于常数小,可以通过本题。
但交上去……MLE!
空间优化
空间复杂度也是\(O(nk)\)的,但事实上我们只需要用到\(O(k^2)\)的内容,很容易想到滚动数组。
于是写出:
inline int pos(const int &x)
{
return (x % 600) + 1;
}
int main()
{
scanf("%d%d", &n, &k);
dp[pos(0)][0] = 1;
int i, j;
for (i = 1; i <= n; ++i)
{
memset(dp[pos(i)], 0, sizeof(dp[pos(i)]));
for (j = 1; j <= k && j <= i; ++j)
dp[pos(i)][j] = (dp[pos(i-j)][j] + dp[pos(i-1)][j - 1]) % 10086;
}
printf("%d", dp[pos(n)][k]);
return 0;
}
个人预期是能AC了,但实际上……第15个点冷酷无情地T了。
评测机跑得不够快
拯救TLE
吸了氧还是不能拯救世界之后,我想起了当年用的一种奇淫技巧……
显然此时TLE完全是常数问题,将内层循环的两个判断改成取min逆序后依然无法通过。
常数影响最大的就是pos函数了,于是改成了指针映射,成功AC!
指针映射
我们考虑要如何避免pos函数的高耗时,当然想到了预处理。预处理一遍pos数组,直接访问即可,这应该也是能卡过的(没有尝试)。
但还有一种更有技巧性、效率更高的方法:指针。
开一个f数组,如下:
int *f[maxn];
然后赋值:
f[i] = dp[pos(i)];
那么访问时,直接:
f[i][j] = ....
为什么会快?这个很显然了吧……事实上,这种方法比:
dp[pos[i]][j] = ....
要快上不少,为什么?
因为\(f[i]\)存的索引直接加上\(j\)就能得到地址,我们实际上避免了两个大数的乘法,而使其变成了加法。
举例:
原先访问方式:
dp[x∗(m+2)+y]
进行了一次乘法一次加法
解析一下就是:
return dp + (x * (m+2) + y);
而现在的访问方式:
(f[x]+y)
解析一下就是:
return (f + x) + y;
效率提升相当显著。
以上这段是直接copy原来那篇树上背包的优化中的内容……
同时注意我们的预处理方式:
int pointer = 0;
++pointer;
if(pointer >= 600)
pointer -= 600;
可以避免反复求余的预处理效率损失。
最后第15个点跑了500ms左右……
Code
#include <cstdio>
#include <cstring>
using namespace std;
int n, k;
int dp[610][610];
int *f[200100];
inline int min(const int &a,const int &b){return a<b?a:b;}
int main()
{
scanf("%d%d", &n, &k);
int p = 0;
for (int i = 0; i <= n; ++i)
{
if (p >= 600)
p -= 600;
f[i] = dp[p + 1];
++p;
}
f[0][0] = 1;
int i, j;
for (i = 1; i <= n; ++i)
{
memset(f[i], 0, sizeof(f[i]));
for (j = min(k,i); j; --j)
f[i][j] = (f[i - j][j] + f[i - 1][j - 1]) % 10086;
}
printf("%d", f[n][k]);
return 0;
}
[LuoguP1025][数据加强]数的划分的更多相关文章
- luoguP1025+codevs 1039 数的划分 x
luoguP1025 + codevs1039 数的划分 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Des ...
- C语言 · 数的划分
算法训练 数的划分 时间限制:1.0s 内存限制:256.0MB 锦囊1 使用动态规划. 锦囊2 用F[i,j,k]表示将i划分成j份,最后一份为k的方案数,则F[i,j,k]= ...
- dp练习(8)——数的划分
1039 数的划分 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 将整数 ...
- codevs——1039 数的划分
1039 数的划分 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 将整数 ...
- Java实现 蓝桥杯VIP 算法提高 数的划分
算法提高 数的划分 时间限制:1.0s 内存限制:256.0MB 问题描述 一个正整数可以划分为多个正整数的和,比如n=3时: 3:1+2:1+1+1: 共有三种划分方法. 给出一个正整数,问有多少种 ...
- Oracle 查询库中所有表名、字段名、字段名说明,查询表的数据条数、表名、中文表名、
查询所有表名:select t.table_name from user_tables t;查询所有字段名:select t.column_name from user_col_comments t; ...
- 查看SqlAzure和SQLServer中的每个表数据行数
SqlAzure中的方式: select t.name ,s.row_count from sys.tables t join sys.dm_db_partition_stats s ON t.obj ...
- jquery通过ajax获取数据,控制显示的数据条数
效果图: 现在我们可以先看它的json数据,如图所示: 然后可以对应我们的代码进行理解. jquery通过ajax获取数据,并通过窗口大小控制显示的数据条数,以及可以根据 ...
- NOIP2001 数的划分
题二 数的划分(20分) 问题描述 将整数n分成k份,且每份不能为空,任意两份不能相同(不考虑顺序). 例如:n=7,k=3,下面三种分法被认为是相同的. 1,1,5; 1,5,1; 5,1,1; 问 ...
随机推荐
- Linux学习:进入与退出系统
进入Linux系统:必须要输入用户的账号,在系统安装过程中可以创建以下两种帐号: 1.root--超级用户帐号(系统管理员),使用这个帐号可以在系统中做任何事情. 2.普通用户--这个帐号供普通用户使 ...
- Golang 函数以及函数和方法的区别
在接触到go之前,我认为函数和方法只是同一个东西的两个名字而已(在我熟悉的c/c++,python,java中没有明显的区别),但是在golang中者完全是两个不同的东西.官方的解释是,方法是包含了接 ...
- Update(Stage4):spark_rdd算子:第1节 RDD_定义_转换算子:深入RDD
一. 二.案例:详见代码.针对案例提出的6个问题: 假设要针对整个网站的历史数据进行处理, 量有 1T, 如何处理? 放在集群中, 利用集群多台计算机来并行处理 如何放在集群中运行? 简单来讲, 并行 ...
- iview table表格内容为数组或者对象的子元素时问题讨论
正常情况下,iview框架table表格内容只需配置好 key 就OK, 稍微复杂点就是用一个reder函数进行操作(params.row 为本行数据) . 以上问题都很好解决,无需太动脑筋. 开发中 ...
- NB-IoT的介绍最终版 !看明白了吗?(转自 top-iot)
标签: NB-IOT 1 1G-2G-3G-4G-5G 不解释,看图,看看NB-IoT在哪里? 2 NB-IoT标准化历程 3GPP NB-IoT的标准化始于2015年9月,于2016年7月R13 ...
- lua叠代器
注意:叠待值遇到nil就退出 叠代器,是符合for遍历框架,需要满足条件 1-叠代函数,常量,控制变量 2-叠代函数可以接受二个参数,当然也可以忽略处理(利用闭包封装参数作为控制变量和状态变量) 无状 ...
- tomcat启动报错failed to start component
严重: A child container failed during start java.util.concurrent.ExecutionException: org.apache.catali ...
- springboot下使用dubbo的简单demo
1.一些话 现在java后端开发大多用springboot来简化环境搭建,现在一直使用的是springcloud和k8s有关的东西,以前用过dubbo,但那会儿的开发环境搭建流程较为繁琐,而且不支持r ...
- Java 模拟斗地主
模拟斗地主 public class M1 { public static void main(String args[]) { DouDiZhu02(); } private static void ...
- gitlab两种连接方式:ssh和http配置介绍 --转自 散尽浮华
gitlab环境部署好后,创建project工程,在本地或远程下载gitlab代码,有两种方式:ssh和http 1)ssh方式:这是一种相对安全的方式 这要求将本地的公钥上传到gitlab中,如下图 ...