UVA - 1213 Sum of Different Primes (不同素数之和)(dp)
题意:选择k个质数,使它们的和等于n,问有多少种方案。
分析:dp[i][j],选择j个质数,使它们的和等于i的方法数。
#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b) {
if(fabs(a - b) < eps) return 0;
return a < b ? -1 : 1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 1120 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int dp[MAXN][20];
int vis[MAXN];
void init(){
vis[0] = vis[1] = 1;
for(int i = 2; i <= sqrt(MAXN + 0.5); ++i){
if(!vis[i]){
for(int j = i * i; j < MAXN; j += i){
vis[j] = 1;
}
}
}
dp[0][0] = 1;
for(int i = 0; i < MAXN; ++i){
if(vis[i]) continue;
for(int j = 14; j >= 1; --j){
for(int k = MAXN - 1; k >= i; --k){
dp[k][j] += dp[k - i][j - 1];
}
}
}
}
int main(){
init();
int n, k;
while(scanf("%d%d", &n, &k) == 2){
if(!n && !k) return 0;
printf("%d\n", dp[n][k]);
}
return 0;
}
UVA - 1213 Sum of Different Primes (不同素数之和)(dp)的更多相关文章
- UVA 1213 - Sum of Different Primes(递推)
类似一个背包问题的计数问题.(虽然我也不记得这叫什么背包了 一开始我想的状态定义是:f[n = 和为n][k 个素数]. 递推式呼之欲出: f[n][k] = sigma f[n-pi][k-1]. ...
- UVA 1213 Sum of Different Primes(经典dp)
题意:选择k(k<15)个唯一质数,求出和为n(n<1121)的可能数 题解:预处理dp,dp[k][n]表示使用k个素数拼成n的总方案数 就是三重枚举,枚举k,枚举n,枚举小于n的素数 ...
- UVa 1213 Sum of Different Primes (DP)
题意:给定两个数 n 和 k,问你用 k 个不同的质数组成 n,有多少方法. 析:dp[i][j] 表示 n 由 j 个不同的质数组成,然后先打表素数,然后就easy了. 代码如下: #pragma ...
- UVA 1213 Sum of Different Primes
https://vjudge.net/problem/UVA-1213 dp[i][j][k] 前i个质数里选j个和为k的方案数 枚举第i个选不选转移 #include<cstdio> # ...
- UVa 1210 连续素数之和
https://vjudge.net/problem/UVA-1210 题意: 输入整数n,有多少种方案可以把n写成若干个连续素数之和? 思路: 先素数打表,然后求个前缀和. #include< ...
- POJ 3132 & ZOJ 2822 Sum of Different Primes(dp)
题目链接: POJ:id=3132">http://poj.org/problem?id=3132 ZOJ:http://acm.zju.edu.cn/onlinejudge/show ...
- sicily 1259. Sum of Consecutive Primes
Description Some positive integers can be represented by a sum of one or more consecutive prime numb ...
- codeforces 569C C. Primes or Palindromes?(素数筛+dp)
题目链接: C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes in ...
- POJ 2739 Sum of Consecutive Prime Numbers(素数)
POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...
随机推荐
- SPring整合Mybatis方式一
Spring整合Mybatis 需要maven包: mysql-connector-java 5.1.47, mybatis 3.5.2, spring-webmvc 5.2.2.RELEASE, s ...
- Masonry与UITableView+FDTemplateLayoutCell搭配使用
打个小广告:本人开发了一个宠物相关的App,欢迎大家下载体验~ 下载二维码: 进入正文: 之前发过一篇博客,也是对这两个的练习使用,但是之后遇到些问题,所以删除重写了.抱歉 Masonry是一款轻量级 ...
- Linux打印变量、环境配置、别名和文件删除操作
一.打印命令 1.echo打印命令 a.打印环境变量 echo $Path b.打印Path命令目录 which,比如:which ls表示打印的是Path目录中第一定义的全局变量的目录中命令. 二. ...
- NO33 第6--7关题目讲解
客户端(电脑)通过浏览器输入域名,先找hosts文件及本地dns缓存,若都没有,就找localDNS服务器,若没有,localDNF服务器找根服务器(全球13台的那个根”.“服务器),根就把.com这 ...
- Docker + Maven + Docker-compose
前言: docker:容器化管理 maven:支持docker-maven的插件,通过 mvn clean -Dmaven.test.skip package dockerfile:build 打包命 ...
- vSphere HA 原理与配置
内容预览: 1. vSphere HA 概述 2. vSphere HA 提供的保护级别 3. vSphere HA运行原理 4. vSphere HA 故障支持场景 5. vSphere HA接入控 ...
- mitmproxy 配置
pip install mitmproxy Man In The Middle 原理 mitmproxy工程工具包,主要包含了3个组件 功能一致,交互界面不同 mitmproxy:命令行界面,wind ...
- 012.Delphi插件之QPlugins,多实例内嵌窗口服务
这个DEMO中主要是在DLL中建立了一个IDockableControl类,并在DLL的子类中写了具体的实现方法. 在主程序exe中,找到这个服务,然后调用DLL的内嵌方法,把DLL插件窗口内嵌到主程 ...
- JavaScript的调用
1 方法调用模式 var myObject = { value : 0, increment : function(inc) { alert('hi'); } }; myObject.incremen ...
- HDU - 6130 Kolakoski (打表)
题意:由1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,……合并可得1,22,11,2,1,22,1,22,11,2,11,22,1,再由每个数的位数可得新序列,推出新 ...