YOLO V1、V2、V3算法 精要解说
前言
之前无论是传统目标检测,还是RCNN,亦或是SPP NET,Faste Rcnn,Faster Rcnn,都是二阶段目标检测方法,即分为“定位目标区域”与“检测目标”两步,而YOLO V1,V2,V3都是一阶段的目标检测。
从R-CNN到FasterR-CNN网络的发展中,都是基于proposal+分类的方式来进行目标检测的,检测精度比较高,但是检测速度不行,YOLO提供了一种更加直接的思路:
直接在输出层回归boundingbox的位置和boundingbox所属类别的置信度,相比于R-CNN体系的目标检测,YOLO将目标检测从分类问题转换为回归问题。其主要特点是:
•速度快,能够达到实时的要求,在TitanX的GPU上达到45fps;
•使用全图Context信息,背景错误(把背景当做物体)比较少;
•泛化能力强;



其想做的事如此看来很清晰,先判断是目标还是背景,若是目标,则再判断是属于这20个类别的哪个类(此VOC数据集是20个类别,别的数据集就是别的类别)
因为论文建议了我们一个grid cell最好是承载着两个边框,即bounding box,那么,这幅7*7个cell的图就有98个边框了,如下图

每个边框都是上面公式计算来的,我有写的,即背景还是物体的概率*20个类哪个类别的概率,如下图

然后呢 ,就是处理这98个框框,如下图

这总共是20个类别,一行行的这么处理,直到20行处理完毕
然后对结果遍历,如果置信度的评分大于0,那这个框就可以代表此物体,如果得分小于0,就不行,如下图

来看一下损失函数吧,我把它分成了三类

总结一下,并分析一下优缺点:

YOLO V2
算法的增强正是有了对原来的基础不断改进才得来的,YOLO V2相对于V1主要有三方面变化。
下图是聚类的不同标准下的平均IOU值

其沿用了Faster RCNN中Anchor box(锚点框)的思想,通过kmeans方法在VOC数据集(COCO数据集)上对检测物体的宽高进行了聚类分析,得出了5个聚类中心,因此选取5个anchor的宽高: (聚类时衡量指标distance = 1-IOU(bbox, cluster))
COCO: (0.57273, 0.677385), (1.87446, 2.06253), (3.33843, 5.47434), (7.88282, 3.52778), (9.77052, 9.16828)
VOC: (1.3221, 1.73145), (3.19275, 4.00944), (5.05587, 8.09892), (9.47112, 4.84053), (11.2364, 10.0071)
这样每个grid cell将对应5个不同宽高的anchor, 如下图所示:(上面给出的宽高是相对于grid cell,对应的实际宽高还需要乘以32(2的5次方),因为这里给出的原图大小是416*416大小的,经过卷积啊池化啊下采样了5次后变成了13*13大小的)

关于预测的bbox的计算:(416*416-------13*13 为例),卷积池化等经历了5次下采样,缩小了2的5次方倍(看下面这三段话的时候,记得看此行往上数第9到12行字,相信你会明白的)
(1) 输入图片尺寸为416*416, 最后输出结果为13*13*125,这里的125指5*(5 + 20),5表示5个anchor,25表示[x, y, w, h, confidence ] + 20 class ),即每一个anchor预测一组值。
(2) 对于每一anchor预测的25个值, x, y是相对于该grid cell左上角的偏移值,需要通过logistic函数将其处理到0-1之间。如13*13大小的grid,对于index为(6, 6)的cell,预测的x, y通过logistic计算为xoffset, yoffset, 则对应的实际x = 6 + xoffset, y = 6+yoffset, 由于0<xoffset<1, 0<yoffset<1, 预测的实际x, y总是在(6,6)的cell内。对于预测的w, h是相对于anchor的宽高,还需乘以anchor的(w, h), 就得到相应的宽高
(3) 由于上述尺度是在13*13下的,需要还原为实际的图片对应大小,还需乘以缩放倍数32



YOLO V1、V2、V3算法 精要解说的更多相关文章
- android google map v1 v2 v3 参考
V1,V2已经不被推荐使用,谷歌强烈推荐使用V3. 本人在选择时着实纠结了良久,现在总结如下: 对于V1,现在已经申请不到API KEY了,所以不要使用这个版本.这个是网址:https://devel ...
- 目标检测:YOLO(v1 to v3)——学习笔记
前段时间看了YOLO的论文,打算用YOLO模型做一个迁移学习,看看能不能用于项目中去.但在实践过程中感觉到对于YOLO的一些细节和技巧还是没有很好的理解,现学习其他人的博客总结(所有参考连接都附于最后 ...
- GoogLeNet 之 Inception v1 v2 v3 v4
论文地址 Inception V1 :Going Deeper with Convolutions Inception-v2 :Batch Normalization: Accelerating De ...
- 从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2
from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule ...
- 51nod Bash游戏(V1,V2,V3,V4(斐波那契博弈))
Bash游戏V1 有一堆石子共同拥有N个. A B两个人轮流拿.A先拿.每次最少拿1颗.最多拿K颗.拿到最后1颗石子的人获胜.如果A B都很聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得 ...
- 51Nod 最大M子段和系列 V1 V2 V3
前言 \(HE\)沾\(BJ\)的光成功滚回家里了...这堆最大子段和的题抠了半天,然而各位\(dalao\)们都已经去做概率了...先%为敬. 引流之主:老姚的博客 最大M子段和 V1 思路 最简单 ...
- 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...
- DNN:windows使用 YOLO V1,V2
本文有修改,如有疑问,请移步原文. 原文链接: YOLO v1之总结篇(linux+windows) 此外: YOLO-V2总结篇 Yolo9000的改进还是非常大的 由于原版的官方YOLOv ...
- Object Detection(RCNN, SPPNet, Fast RCNN, Faster RCNN, YOLO v1)
RCNN -> SPPNet -> Fast-RCNN -> Faster-RCNN -> FPN YOLO v1-v3 Reference RCNN: Rich featur ...
随机推荐
- 【PAT甲级】1061 Dating (20 分)
题意: 给出四组字符串,前两串中第一个位置相同且大小相等的大写字母(A~G)代表了周几,前两串中第二个位置相同且大小相等的大写字母或者数字(0~9,A~N)代表了几点,后两串中第一个位置相同且大小相等 ...
- 【PAT甲级】1001 A+B Format (20 分)
题意:给两个整数a,b,计算a+b的值并每三位用逗号隔开输出(−1e6≤a,b≤1e6) AAAAAccepted code: #include<bits/stdc++.h> us ...
- Nginx企业级优化!(重点)
隐藏Nginx版本号!(重点) 在生产环境中,需要隐藏 Nginx 的版本号,以避免安全漏洞的泄漏 一旦有黑客知道Nginx版本号便可以利用Nginx漏洞进行攻击,严重影响到了公司的安全 查看隐藏版本 ...
- shell脚本部署apache并能通过浏览器访问!
第一步:导入httpd-2.2.17.tar包 第二步:创建一个test.sh文件(可在/root下) 第三步编写shell脚本 > 会重写文件,如果文件里面有内容会覆盖 >>这个是 ...
- 简单聊一聊Ansible自动化运维
一.Ansible概述 Ansible是今年来越来越火的一款开源运维自动化工具,通过Ansible可以实现运维自动化,提高运维工程师的工作效率,减少人为失误.Ansible通过本身集成的非常丰富的模块 ...
- Python 爬取 热词并进行分类数据分析-[热词关系图+报告生成]
日期:2020.02.05 博客期:144 星期三 [本博客的代码如若要使用,请在下方评论区留言,之后再用(就是跟我说一声)] 所有相关跳转: a.[简单准备] b.[云图制作+数据导入] c.[拓扑 ...
- C# Lambda排序
1.按照多个字段进行排序:xxxList.OrderBy(c => c.RoadCode).ThenBy(c => c.Qdzh),表示先按照RoadCode字段进行排序再按照Qdzh字段 ...
- navicat12破解详细教程
以管理员身份运行此注册机: 运行注册机 打开注册机后,1) Patch勾选Backup.Host和Navicat v12,然后点击Patch按钮: 默认勾选 找到Navicat Premium 12安 ...
- tcp连接建立和断开
TCP协议作为传输层主要协议之一,具有面向连接,端到端,可靠的全双工通信,面向字节流的数据传输协议. 1.TCP报文段 虽然TCP面试字节流,但TCP传输的数据单元却是报文段.TCP报文段分为TCP首 ...
- Git远程分支代码强制回退&Tag添加
Git指令大全:https://www.alexkras.com/getting-started-with-git/ Git提交错了,还是Master分支,哎呦喂咋整?请见下文. [场景描述] 项 ...