Learn Stats for Python III: Probability and Sampling

BY IVÁN PALOMARES CARRASCOSAPOSTED ON SEPTEMBER 9, 2024

Probability and Sampling

About Part III: Probability and Sampling

Part III dives into applied probability theory, concretely by modeling discrete and continuous probability distributions in Python. Basics of probability theory are recommended to make the most of the tutorials recommended in the sections below. The following post is a good starting point to acquaint or refresh basic probability concepts. Following probability distribution modeling with Python, we suggest some tutorials focused on data sampling methods: most of these methods rely on the principles behind probability distributions.

1. Probability Distributions

There are plenty of Python tutorials that introduce key probability distributions, each focused on describing how data behaves under different scenarios. Understanding these distributions is essential for statistical analysis because they constitute the basis for performing inferences about data populations from samples (as we will cover in part IV of the series).

How commonly do used distributions in most fields, like Normal, Binomial, and Poisson, behave? To find the answer through a bit of practice, we suggest you get acquainted with probability distribution modeling for Python with these five tutorials related to the most commonly utilized distributions in the majority of applications:

How to use the uniform distribution in Python

How to use the binomial distribution in Python

How to generate a Normal Distribution in Python

How to plot a Normal Distribution in Python

How to use the Poisson distribution in Python

How to Use the Exponential Distribution in Python

2. Critical Values and p-values

In statistical inference -which we will focus on in the next post of this series through hypothesis testing methods-, critical values and p-values are essential concepts. Finding these values for datasets modeled by diverse probability distributions, and interpreting them, is important to yield conclusions about the data such as the existence or absence of significant differences between populations or groups. Getting familiar with these statistics paves the way for assessing the significance of your data analyses and making reliable data-driven decisions.

How to find the Z critical value in Python

How to find the T critical value in Python

How to find a value from a Z-score in Python

How to find a value from a t-score in Python

Note that the concepts covered in the four suggested tutorials above are closely interrelated to hypothesis testing methods which will be covered in more detail in part IV of this tutorial series.

3. Cumulative Distribution Functions (CDFs) and Specific Functions

These tutorials dive into the concept of cumulative distribution functions (CDFs), which are used to quantify the probability that tells us the probability that a random variable takes on a value less than or equal to some threshold value. They are another crucial element in various statistical inference and hypothesis testing approaches. CDFs are pivotal in understanding the probability of events up to a certain threshold. For example, the probability that daily rainfall will be less than or equal to 5 inches per squared meter.

How to Calculate & Plot a CDF in Python

How to Calculate & Plot the Normal CDF in Python

4. Sampling Methods

Sampling techniques are vital for collecting representative data from larger populations, often to perform subsequent hypotheses testing methods on them. These methods include stratified, cluster, and systematic sampling, and they can be done with or without replacement depending on the scenario and particular data needs and constraints. Data sampling methods help ensure that the samples drawn are unbiased, representative of the overall population, and statistically valid, leading to more accurate and reliable conclusions.

Sampling with replacement in Pandas

Stratified sampling in Pandas

Systematic sampling in Pandas

Cluster sampling in pandas

Coming Up Next

Now that we are acquainted with probability distributions and laid the foundations for performing inferential statistical analysis, the next post in this series will focus on formal statistical inference methodologies for such analysis tasks, including confidence interval analysis and hypothesis tests.

SciTech-Mathmatics-Probability+Statistics-Applications : Probability&Sampling : Learn Stats for Python III: Probability and Sampling,的更多相关文章

  1. Probability&Statistics 概率论与数理统计(1)

    基本概念 样本空间: 随机试验E的所有可能结果组成的集合, 为E的样本空间, 记为S 随机事件: E的样本空间S的子集为E的随机事件, 简称事件, 由一个样本点组成的单点集, 称为基本事件 对立事件/ ...

  2. Learn nodejs: Tutorials for Programmers of All Levels, 程序员每个阶段的示例

    https://stackify.com/learn-nodejs-tutorials/ What is Node.js? Node.js can be defined as a dynamic, c ...

  3. Oracle中的AWR,全称为Automatic Workload Repository

    Oracle中的AWR,全称为Automatic Workload Repository,自动负载信息库.它收集关于特定数据库的操作统计信息和其他统计信息,Oracle以固定的时间间隔(默认为1个小时 ...

  4. RPC 框架之 Goole protobuf

    Goole 的 protobuf  即 Protocol Buffers  是一个很好的RPC 框架,支持 c++ python  java 接下来进行官方文档的解读,然后你会对protobuf 会有 ...

  5. (转)【深度长文】循序渐进解读Oracle AWR性能分析报告

    原文:https://dbaplus.cn/news-10-734-1.html https://blog.csdn.net/defonds/article/details/52958303 作者介绍 ...

  6. (转)Python爬虫--通用框架

    转自https://blog.csdn.net/m0_37903789/article/details/74935906 前言: 相信不少写过Python爬虫的小伙伴,都应该有和笔者一样的经历吧只要确 ...

  7. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  8. [Math Review] Statistics Basic: Sampling Distribution

    Inferential Statistics Generalizing from a sample to a population that involves determining how far ...

  9. UVA10056 - What is the Probability ?(概率)

    UVA10056 - What is the Probability ? (概率) 题目链接 题目大意:有n个人玩游戏,一直到一个人胜出之后游戏就能够结束,要不然就一直从第1个到第n个循环进行,没人一 ...

  10. 【概率证明】—— sum and product rules of probability

    1. sum and product rules of probability ⎧⎩⎨p(x)=∫p(x,y)dyp(x,y)=p(x|y)p(y) sum rule of probability 的 ...

随机推荐

  1. Laravel RCE(CVE-2021-3129)漏洞复现

    Laravel框架简介 Laravel是一套简洁.优雅的PHP Web开发框架(PHP Web Framework).它可以让你从面条一样杂乱的代码中解脱出来:它可以帮你构建一个完美的网络APP,而且 ...

  2. Dpanel:Star2k,短短时间就被大家称为GitHub开源神器!轻量化Docker面板,还在等什么

    Dpanel:Star2k,短短时间就被大家称为GitHub开源神器!轻量化Docker面板,还在等什么 如今的软件开发和运维领域,Docker容器技术已经成为一种主流的解决方案,它允许开发者和系统管 ...

  3. 俩天完美复刻DeepWiki,并且免费开源!

    俩天完美复刻DeepWiki,并且免费开源! 大家好!今天非常高兴为大家介绍KoalaWiki项目 - 这是我们团队花费两天时间完美复刻一个免费开源的AI驱动代码知识库系统,可以说是DeepWiki的 ...

  4. 【笔记】Python3|爬虫请求 CSRF-Token 时如何获取Token、Token过期、处理 CSRF-Token 需要注意的问题及示例

      CSRF-Token 机制是 Web 应用程序中常用的安全机制,它可以防止跨站请求伪造攻击,但会给爬虫造成一定的困扰.本文将介绍在使用 Python3 爬虫时,处理 CSRF-Token 机制需要 ...

  5. 内网私仓全流程搭建记录(二)-npm私仓提交与拉取

    1.npm私仓依赖下载及本地上传 方法一1)使用Pycharm创建py文档,写入如下py代码: import os import re import aiohttp import asyncio fr ...

  6. (dify)如何使用dify自定义知识库【dify外部链接知识库】

    尝试dify自定义知识库 根据官网教程,可以从知识库的右上角外部知识库进行添加外部知识库 前往 "知识库" 页,点击右上角的 "外部知识库 API",轻点 &q ...

  7. ansible实战-2023

    环境信息:cat /etc/ansible/hosts[webserver]192.168.31.18 ansible_ssh_user=root ansible_ssh_pass=123456 ht ...

  8. flannel,canal,网络控制

    docker网络: bridge 自连网络名称空间 joined 与另外容器共享使用网络名称空间 open 容器直接共享宿主机的网络名称空间 none 不使用任何网络名称空间 k8s网络通信模型 容器 ...

  9. SpringBoot2 可以使用 SolonMCP 开发 MCP(江湖救急)

    MCP 官方的 java-sdk 目前要求 java17+(直接使用 sdk 也比较复杂).Spring-AI(有 MCP 内容)也是要求 java17+. SpringBoot2 怎么办? 使用 S ...

  10. B1092 最好吃的月饼

    描述 月饼是久负盛名的中国传统糕点之一,自唐朝以来,已经发展出几百品种. 若想评比出一种"最好吃"的月饼,那势必在吃货界引发一场腥风血雨-- 在这里我们用数字说话,给出全国各地各种 ...