Learn Stats for Python III: Probability and Sampling

BY IVÁN PALOMARES CARRASCOSAPOSTED ON SEPTEMBER 9, 2024

Probability and Sampling

About Part III: Probability and Sampling

Part III dives into applied probability theory, concretely by modeling discrete and continuous probability distributions in Python. Basics of probability theory are recommended to make the most of the tutorials recommended in the sections below. The following post is a good starting point to acquaint or refresh basic probability concepts. Following probability distribution modeling with Python, we suggest some tutorials focused on data sampling methods: most of these methods rely on the principles behind probability distributions.

1. Probability Distributions

There are plenty of Python tutorials that introduce key probability distributions, each focused on describing how data behaves under different scenarios. Understanding these distributions is essential for statistical analysis because they constitute the basis for performing inferences about data populations from samples (as we will cover in part IV of the series).

How commonly do used distributions in most fields, like Normal, Binomial, and Poisson, behave? To find the answer through a bit of practice, we suggest you get acquainted with probability distribution modeling for Python with these five tutorials related to the most commonly utilized distributions in the majority of applications:

How to use the uniform distribution in Python

How to use the binomial distribution in Python

How to generate a Normal Distribution in Python

How to plot a Normal Distribution in Python

How to use the Poisson distribution in Python

How to Use the Exponential Distribution in Python

2. Critical Values and p-values

In statistical inference -which we will focus on in the next post of this series through hypothesis testing methods-, critical values and p-values are essential concepts. Finding these values for datasets modeled by diverse probability distributions, and interpreting them, is important to yield conclusions about the data such as the existence or absence of significant differences between populations or groups. Getting familiar with these statistics paves the way for assessing the significance of your data analyses and making reliable data-driven decisions.

How to find the Z critical value in Python

How to find the T critical value in Python

How to find a value from a Z-score in Python

How to find a value from a t-score in Python

Note that the concepts covered in the four suggested tutorials above are closely interrelated to hypothesis testing methods which will be covered in more detail in part IV of this tutorial series.

3. Cumulative Distribution Functions (CDFs) and Specific Functions

These tutorials dive into the concept of cumulative distribution functions (CDFs), which are used to quantify the probability that tells us the probability that a random variable takes on a value less than or equal to some threshold value. They are another crucial element in various statistical inference and hypothesis testing approaches. CDFs are pivotal in understanding the probability of events up to a certain threshold. For example, the probability that daily rainfall will be less than or equal to 5 inches per squared meter.

How to Calculate & Plot a CDF in Python

How to Calculate & Plot the Normal CDF in Python

4. Sampling Methods

Sampling techniques are vital for collecting representative data from larger populations, often to perform subsequent hypotheses testing methods on them. These methods include stratified, cluster, and systematic sampling, and they can be done with or without replacement depending on the scenario and particular data needs and constraints. Data sampling methods help ensure that the samples drawn are unbiased, representative of the overall population, and statistically valid, leading to more accurate and reliable conclusions.

Sampling with replacement in Pandas

Stratified sampling in Pandas

Systematic sampling in Pandas

Cluster sampling in pandas

Coming Up Next

Now that we are acquainted with probability distributions and laid the foundations for performing inferential statistical analysis, the next post in this series will focus on formal statistical inference methodologies for such analysis tasks, including confidence interval analysis and hypothesis tests.

SciTech-Mathmatics-Probability+Statistics-Applications : Probability&Sampling : Learn Stats for Python III: Probability and Sampling,的更多相关文章

  1. Probability&Statistics 概率论与数理统计(1)

    基本概念 样本空间: 随机试验E的所有可能结果组成的集合, 为E的样本空间, 记为S 随机事件: E的样本空间S的子集为E的随机事件, 简称事件, 由一个样本点组成的单点集, 称为基本事件 对立事件/ ...

  2. Learn nodejs: Tutorials for Programmers of All Levels, 程序员每个阶段的示例

    https://stackify.com/learn-nodejs-tutorials/ What is Node.js? Node.js can be defined as a dynamic, c ...

  3. Oracle中的AWR,全称为Automatic Workload Repository

    Oracle中的AWR,全称为Automatic Workload Repository,自动负载信息库.它收集关于特定数据库的操作统计信息和其他统计信息,Oracle以固定的时间间隔(默认为1个小时 ...

  4. RPC 框架之 Goole protobuf

    Goole 的 protobuf  即 Protocol Buffers  是一个很好的RPC 框架,支持 c++ python  java 接下来进行官方文档的解读,然后你会对protobuf 会有 ...

  5. (转)【深度长文】循序渐进解读Oracle AWR性能分析报告

    原文:https://dbaplus.cn/news-10-734-1.html https://blog.csdn.net/defonds/article/details/52958303 作者介绍 ...

  6. (转)Python爬虫--通用框架

    转自https://blog.csdn.net/m0_37903789/article/details/74935906 前言: 相信不少写过Python爬虫的小伙伴,都应该有和笔者一样的经历吧只要确 ...

  7. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  8. [Math Review] Statistics Basic: Sampling Distribution

    Inferential Statistics Generalizing from a sample to a population that involves determining how far ...

  9. UVA10056 - What is the Probability ?(概率)

    UVA10056 - What is the Probability ? (概率) 题目链接 题目大意:有n个人玩游戏,一直到一个人胜出之后游戏就能够结束,要不然就一直从第1个到第n个循环进行,没人一 ...

  10. 【概率证明】—— sum and product rules of probability

    1. sum and product rules of probability ⎧⎩⎨p(x)=∫p(x,y)dyp(x,y)=p(x|y)p(y) sum rule of probability 的 ...

随机推荐

  1. access 类对象使用

    类模块代码如下: Option Explicit '定义按钮对象和onclick 触发内容 Private WithEvents m_Closebtn As Access.CommandButton ...

  2. Dify+DeepSeek实战教程!企业级 AI 文档库本地化部署,数据安全与智能检索我都要

    上次折腾完 DeepSeek 的本地私有化部署后,心里就一直琢磨着:能不能给咱们 Rainbond 的用户再做点实用的东西?毕竟平时总收到反馈说文档查找不够方便,要是能有个 AI 文档助手该多好.正想 ...

  3. Python 类不要再写 __init__ 方法了

    花下猫语:我们周刊第 98 期分享过一篇文章,它指出了 __init__ 方法存在的问题和新的最佳实践,第 99 期也分享了一篇文章佐证了第一篇文章的观点.我认为它们提出的是一个值得注意和思考的问题, ...

  4. Spring纯注解的事务管理

    Spring纯注解的事务管理 源码 代码测试 pom.xml <?xml version="1.0" encoding="UTF-8"?> < ...

  5. 【记录】Truenas scale|NFSv4数据集的子目录或文件的ACL完全访问权限继承老是继承不了怎么回事

    我遇到了数据集下新建文件夹或文件,新建的文件夹或文件没有和数据集的ACL设置相符合的情况.其根本原因是NFSv4的完全访问权限要想继承的话,它的访问设置权限要设置"用户"和&quo ...

  6. 网络编程:select

    原理:参考:https://my.oschina.net/fileoptions/blog/911091 select中内核函数有哪些 源码实现: #undef __NFDBITS #define _ ...

  7. RPC实战与核心原理之熔断限流

    熔断限流 服务端的自我保护 策略 在 RPC 调用中服务端的自我保护策略就是限流 如何实现 方式有很多,比如最简单的计数器,还有可以做到平滑限流的滑动窗口.漏斗算法以及令牌桶算法等等.其中令牌桶算法最 ...

  8. codeup之日期类

    Description 编写一个日期类,要求按xxxx-xx-xx 的格式输出日期,实现加一天的操作. Input 输入第一行表示测试用例的个数m,接下来m行每行有3个用空格隔开的整数,分别表示年月日 ...

  9. codeup之分数序列求和

    Description 有如下分数序列 求出次数列的前20项之和. 请将结果的数据类型定义为double类型. Input 无 Output 小数点后保留6位小数,末尾输出换行. Sample Inp ...

  10. JavaScript入门笔记day2

    文章目录 常用互动方法 1. document.write() 直接向页面输出内容 2. `alert();`弹出消息对话框 3. confirm消息对话框 4. prompt弹出消息对话框,用于需要 ...