我们在生产实践中经常会遇到这样的场景,需把输入源按照需要进行拆分,比如我期望把订单流按照金额大小进行拆分,或者把用户访问日志按照访问者的地理位置进行拆分等。面对这样的需求该如何操作呢?

大部分的DataStream API的算子的输出时单一输出,也就是某种数据类型的流。除了split算子(使用split切分过的流是不能被二次切分的),可以将一条流分成多条流,这些流的数据类型也都相同。processfunction的side outputs功能可以产生多条流,并且这些流的数据类型可以不一样。一个side output可以定义为OutputTag[X]对象,X是输出流的数据类型。processfunction可以通过Context对象发送一个事件到一个或者多个sideouputs.

SideOutPut 分流
SideOutPut 是 Flink 框架为我们提供的最新的也是最为推荐的分流方法,在使用 SideOutPut 时,需要按照以下步骤进行:

定义 OutputTag
调用特定函数进行数据拆分
ProcessFunction
KeyedProcessFunction
CoProcessFunction
KeyedCoProcessFunction
ProcessWindowFunction
ProcessAllWindowFunction
在这里我们使用 ProcessFunction 来讲解如何使用 SideOutPut:


package com.wyh.processFunctionApi

import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.ProcessFunction
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.util.Collector

object SideOutputTest {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment

env.setParallelism(1)
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

val stream = env.socketTextStream("localhost", 7777)

//Transform操作
val dataStream: DataStream[SensorReading] = stream.map(data => {
val dataArray = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble)
})
//===到来的数据是升序的,准时发车,用assignAscendingTimestamps
//指定哪个字段是时间戳 需要的是毫秒 * 1000
// .assignAscendingTimestamps(_.timestamp * 1000)
//===处理乱序数据
// .assignTimestampsAndWatermarks(new MyAssignerPeriodic())
//==底层也是周期性生成的一个方法 处理乱序数据 延迟1秒种生成水位 同时分配水位和时间戳 括号里传的是等待延迟的时间
.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[SensorReading](Time.seconds(1)) {
override def extractTimestamp(t: SensorReading): Long = {
t.timestamp * 1000
}
})

val processedStream = dataStream.process(new FreezingAlert())

//这里打印的是主流
processedStream.print("process data")
//打印侧输出流
processedStream.getSideOutput(new OutputTag[String]("Freezing alert")).print()
processedStream.getSideOutput(new OutputTag[String]("commen data")).print()

//dataStream.print("input data")

env.execute("window Test")

}
}

/**
* 冰点报警 如果小于32F,输出报警信息到侧输出流
*/
//输出的类型是主输出流的数据类型
class FreezingAlert() extends ProcessFunction[SensorReading, SensorReading] {
lazy val alertOutput: OutputTag[String] = new OutputTag[String]("Freezing alert")
lazy val commenOutput: OutputTag[String] = new OutputTag[String]("commen data")

override def processElement(value: SensorReading, ctx: ProcessFunction[SensorReading, SensorReading]#Context, out: Collector[SensorReading]): Unit = {
if (value.temperature < 32.0) {
//侧输出流
ctx.output(alertOutput, value.id + "低温报警!!!此时温度为:" + value.temperature)
} else if (value.temperature >= 32.0) {
ctx.output(commenOutput, value.id + "正常温度。。此时温度为:" + value.temperature)
} else {
//主流
out.collect(value)
}
}
}
 

在Linux命令行中输入 nc -lk 7777开启一个服务

输入数据:

注意:在主程序中,直接print()打印的主输出流,想要打印侧输出流:

    //这里打印的是主流
processedStream.print("process data")
//打印侧输出流
processedStream.getSideOutput(new OutputTag[String]("Freezing alert")).print()
processedStream.getSideOutput(new OutputTag[String]("commen data")).print()

Flink学习(十七) Emitting to Side Outputs(侧输出)的更多相关文章

  1. flink学习总结

    flink学习总结 1.Flink是什么? Apache Flink 是一个框架和分布式处理引擎,用于处理无界和有界数据流的状态计算. 2.为什么选择Flink? 1.流数据更加真实的反映了我们的生活 ...

  2. Apache Flink学习笔记

    Apache Flink学习笔记 简介 大数据的计算引擎分为4代 第一代:Hadoop承载的MapReduce.它将计算分为两个阶段,分别为Map和Reduce.对于上层应用来说,就要想办法去拆分算法 ...

  3. 入门大数据---Flink学习总括

    第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...

  4. 准备数据集用于flink学习

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. CoProcessFunction实战三部曲之三:定时器和侧输出

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  6. Flink学习笔记-新一代Flink计算引擎

    说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...

  7. Flink学习笔记:Flink Runtime

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  8. Flink学习笔记:Flink开发环境搭建

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  9. Flink学习笔记:Flink API 通用基本概念

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

  10. flink学习笔记:DataSream API

    本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...

随机推荐

  1. 藏不住了,这届数字打工人(RPA)想在各行各业“当骨干”!

    数字化时代,最红的"打工人"是谁? 无疑,是RPA(数字化劳动力). 这种由机器人流程自动化+AI驱动,模拟人点击.移动鼠标等在电脑上的操作,在各种规则明确.高重复度业务场景中代替 ...

  2. [BootstrapBlazor] Blazor 使用 Mermaid 渲染详细图表

    BootstrapBlazor 是一套基于 Bootstrap 和 Blazor 的企业级组件库,无缝整合了 Bootstrap 框架与 Blazor 技术.它提供了一整套强大的工具,使开发者能够轻松 ...

  3. Qt开源作品42-视频监控布局

    一.前言 自从做监控系统以来,就一直有打算将这个功能独立出来一个类,这样的话很多系统用到此类布局切换,通用这个类就行,而且后期此布局会增加其他异形布局,甚至按照16:9之类的比例生成布局,之前此功能直 ...

  4. [转]CMake与Make最简单直接的区别

    写程序大体步骤为: 1.用编辑器编写源代码,如.c文件. 2.用编译器编译代码生成目标文件,如.o. 3.用链接器连接目标代码生成可执行文件,如.exe. 但如果源文件太多,一个一个编译时就会特别麻烦 ...

  5. 最新AI智能体开发案例:小红书养生博主必备!教你用Coze工作流搭建「养生赛道」智能体!

    嗨~我是老包.目前专注AI智能体开发与教学 ,持续分享Coze智能体.coze工作流搭建案例.** 老包用扣子为小红书养生赛道博主捏了一个神器 名字是: 「 小红书 | 爆款养生赛道图文生成器」 为什 ...

  6. cmake-2

    似懂非懂,一定要搞懂基础的,剩下的边做边学,从案例中入手. 有关cmake的介绍,请参考: 1.https://www.cnblogs.com/pam-sh/p/13885959.html 2.htt ...

  7. codeblocks调试时怎样查看全局变量?

    问题: 办法: watch窗口下面第一列输入 ::c

  8. AGC018

    AGC018 B 题目大意 举办一场运动会,有 \(N\) 人,\(M\) 个项目,每个人所有项目都有一个排名,会选择参加排名最高且开设的项目,现在要开设若干项目使得人数最多的项目人数尽可能小,求这个 ...

  9. springboot集成测试最小化依赖实践

    目录 简介 版本及依赖引入 springboot版本 项目部分依赖 直接使用SpringBootTest方式 代码示例 场景及优劣 最小化依赖方案 代码 思路及步骤 最小化依赖方案的优点 结论 简介 ...

  10. ChatGPT 背后的英雄——AI芯片

    本文分享自天翼云开发者社区<ChatGPT 背后的英雄--AI芯片>,作者:w****n AI芯片能为人工智能应用提供所需的基础算力:按技术架构主要分为GPU.FPGA和ASIC.Chat ...