【题解】HDU4625 JZPTREE
题意
给定一棵 n 点的树,定义 \(dis(u,v)\) 为树上路径长度。对于每个点,定义 \(E_u=\sum_{v=1}^n dis(u,v)^k\) ,其中 k 为给定数。
求每个 \(E_i\mod 10007 (i=1\sim n)\) .
思路
求幂可以考虑转化成第二类斯特林数。有公式: \(x^n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}}.\)
从而 \(E_u = \sum_{v=1}^n (dis(u, v))^k = \sum_{i=0}^k \begin{Bmatrix} k \\ i \end{Bmatrix} \sum_{v=1}^n (dis(u, v))^{\underline{i}}.\)
令 \(f[u][k] = \sum_{v \in T_u} (dis(u, v))^{\underline{k}},\) \(T_u\) 为 \(u\) 为根的子树,且显然有 \((x+1)^{\underline{k}} = x^{\underline{k}}+kx^{\underline{k-1}}\)
考虑求 \(f[u][k].\)
=\sum_{v\in son(u)}\sum_{w\in T_v}[dis(v,w)+1]^{\underline{k}}
\]
这时候就可以运用上述公式。
\]
回到 \(f[u][k]\) 的定义,可得到转移方程
\]
两遍 DFS 即可。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=5e4+10,K=510,mod=10007;
int n,k,S[N][K],f[N][K],g[N][K];
vector<int> v[N];
void dfs1( int x,int fa )
{
f[x][0]=1;
for ( int i=1; i<=k; i++ ) f[x][i]=0;
for ( auto y : v[x] )
{
if ( y==fa ) continue;
dfs1( y,x );
f[x][0]=(f[x][0]+f[y][0])%mod;
for ( int i=1; i<=k; i++ )
f[x][i]=( f[x][i]+(f[y][i]+i*f[y][i-1]))%mod;
}
}
void dfs2( int x,int fa )
{
if ( !fa ) for ( int i=0; i<=k; i++ ) g[x][i]=f[x][i];
for ( auto y : v[x] )
{
if ( y==fa ) continue;
g[y][0]=g[x][0];
for ( int i=1; i<=k; i++ )
{
int t1=(g[x][i]-(f[y][i]+i*f[y][i-1]))%mod;
int t2=( g[x][i-1]-( f[y][i-1]+(i-1)*(i-2>=0 ? f[y][i-2] : 0) ))%mod;
g[y][i]=( f[y][i]+( t1+i*t2) )%mod;
}
dfs2( y,x );
}
}
void init()
{
S[0][0]=1;
for ( int i=1; i<=500; i++ )
for ( int j=1; j<=i; j++ )
S[i][j]=(S[i-1][j-1]+S[i-1][j]*j)%mod;
}
int main()
{
int T; scanf( "%d",&T ); init();
while ( T-- )
{
scanf( "%d%d",&n,&k );
for ( int i=1; i<=n; i++ )
v[i].clear();
for ( int i=1,x,y; i<n; i++ )
scanf( "%d%d",&x,&y ),v[x].push_back(y),v[y].push_back(x);
dfs1( 1,0 ); dfs2( 1,0 );
for ( int x=1;x<=n; x++ )
{
int res=0;
for ( int i=0; i<=k; i++ )
res=( res+S[k][i]*g[x][i])%mod;
printf( "%d\n",(res+mod)%mod );
}
}
}
【题解】HDU4625 JZPTREE的更多相关文章
- HDU4625 JZPTREE 【树形DP】【第二类斯特林数】
题目大意: 对1到n求题目中描述的那个式子. 题目分析: 幂不好处理,转化为斯特林数. 根据$ n^k= \sum_ { i=0 }^k S(k,i)×i!×C(n,i) $. 我们可以将问题转化为对 ...
- HDU4625 JZPTREE——第二类斯特林数
复杂度大概O(nk) 一些尝试:1.对每个点推出1,2,3,,,到k次方的值.但是临项递推二项式展开也要考虑到具体每个点的dist 2.相邻k次方递推呢?递推还是不能避免k次方的展开 k次方比较讨厌, ...
- HDU - 4625 JZPTREE(第二类斯特林数+树DP)
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是 ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
随机推荐
- tcp输入数据 慢速路径处理 && oob数据 接收 && 数据接收 tcp_data_queue
大致的处理过程 TCP的接收流程:在tcp_v4_do_rcv中的相关处理(网卡收到报文触发)中,会首先通过tcp_check_urg设置tcp_sock的urg_data为TCP_URG_NOTYE ...
- centos 6系统下新磁盘分区(MBR格式)
添加新磁盘后,fdisk -l查看所有磁盘列表( fdisk只能分区2T以下磁盘,超过2T的用parted命令来进行GPT分区) 然后fdisk -cu /dev/sdb选择要分区的磁盘,按m显示菜单 ...
- python-网络安全编程第十天(web目录扫描&&fake_useragent模块&&optionParser模块)
前言 昨天的内容没有完成今天花了点时间继续完成了 感觉自己的学习效率太低了!想办法提高学习效率吧 嗯 ,再制定下今天的目标 开始健身. python fake_useragent模块 1.UserAg ...
- sqlilab less23-less27a
less23 本关过滤掉了注释符号-- 和#,并且变量带入数据库时被单引号包裹.需要将后边的单引号闭合.使用and '1'='1,将其加在注入语句的末尾,使用suffix参数 less-24 以后填坑 ...
- Perfview 分析进程性能
PerfView 概述: PerfView是一个可以帮助你分析CPU和内存问题的工具软件.它非常轻量级也不会入侵诊断的程序,在诊断过程中对诊断的程序影响甚微. Visual Studio自带的性能分析 ...
- python 定时任务框架apscheduler
文章目录 安装 基本概念介绍 调度器的工作流程 实例1 -间隔性任务 实例2 - cron 任务 配置调度器 方法一 方法二 方法三: 启动调度器 方法一:使用默认的作业存储器: 方法二:使用数据库作 ...
- CorelDRAW快速制作闪耀钻石项链效果
今天小编为大家分享使用CorelDRAW快速制作闪耀钻石项链效果,过程并不是很复杂,主要用到刻刀工具.智能填充和渐变色的应用,待到一个角完成之后会走一点点捷径,利用旋转复制的方法做出完整的钻石效果,最 ...
- leetcode151. 翻转字符串里的单词
给定一个字符串,逐个翻转字符串中的每个单词. 示例 1:输入: "the sky is blue"输出: "blue is sky the"示例 2:输入: & ...
- 对于order by子句
order by子句指定排序顺序 select username from user order by username; 依据username的字母顺序对于查找出来的username进行排序,默认是 ...
- iOS图文混排的几种方式
最近优化升级了之前做的一个项目,现在这一期已接近尾声了,今天可以腾出些时间总结一下最近项目中用的比较多的图片文字混排显示的内容.现在遇到比较多的图文混排的基本有三种:一种是在标签中显示 价格符号+价格 ...