生日蛋糕
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 18236   Accepted: 6497

Description

7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。 
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。 
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。 
令Q = Sπ 
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。 
(除Q外,以上所有数据皆为正整数) 

Input

有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。

Output

仅一行,是一个正整数S(若无解则S = 0)。

Sample Input

100
2

Sample Output

68

Hint

圆柱公式 
体积V = πR2
侧面积A' = 2πRH 
底面积A = πR2 

Source


一开始想的是从上往下搜,可以用A*的估价函数剪枝(因为下面的r和h都比上面的大)
然而题解都是递推了mnv[]和mns[]然后用他们从下往上搜
比较神的一个剪枝是2*(n-v)/lr+s>ans
2*(n-v)/lr这块是剩下的体积所能围成图形面积下限,因为推导一下可知圆柱v不变,侧面积与r成反比
还有h的范围,mxh=min(lh-1,(n-mnv[d-1]-v)/(tr*tr));
 
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int N=;
int n,m,ans=1e9;
int mnv[N],mns[N];
void init(){
for(int i=;i<=m;i++){
mnv[i]=mnv[i-]+i*i*i;
mns[i]=mns[i-]+*i*i;
}
}
void dfs(int d,int lh,int lr,int s,int v){
if(d==){
if(v==n&&s<ans) ans=s;
return;
}
if(v+mnv[d]>n||s+mns[d]>ans) return;
if(*(n-v)/lr+s>ans) return;
for(int tr=lr-;tr>=d;tr--){
if(d==m) s=tr*tr;
int mxh=min(lh-,(n-mnv[d-]-v)/(tr*tr));
for(int th=mxh;th>=d;th--){
dfs(d-,th,tr,s+*th*tr,v+tr*tr*th);
}
}
}
int main(){
scanf("%d%d",&n,&m);
init();
dfs(m,n-mnv[m-],sqrt(n-mnv[m-])+,,);
printf("%d",ans);
}
 
 

POJ1190生日蛋糕[DFS 剪枝]的更多相关文章

  1. poj1190 生日蛋糕 dfs

    题意:生日蛋糕有m层,总体积是V.从下向上,每一层的半径r和高度h都是递减的. 给m.v,求最小的表面积s.(不算底面接地的面积) 题目链接:poj1190 剪枝都还没加..样例输出都是错的...还没 ...

  2. [洛谷P1731][NOI1999]生日蛋糕(dfs)(剪枝)

    典型的深搜+剪枝策略 我们采用可行性剪枝.上下界剪枝.优化搜索顺序剪枝.最优性剪枝的方面来帮助我们进行剪枝. 也许有人还不知道剪枝,那我就弱弱地为大家补习一下吧qwq: .优化搜索顺序: 在一些搜索问 ...

  3. 洛谷P1731生日蛋糕(dfs+剪枝)

    P1731 生日蛋糕 题目背景 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层 生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1<=i<=M)层蛋糕是半径为R ...

  4. POJ - 1190 生日蛋糕 dfs+剪枝

    思路:说一下最重要的剪枝,如果当前已经使用了v的体积,为了让剩下的表面积最小,最好的办法就是让R尽量大,因为V = πR 2H,A' = 2πRH,A' = V / R * 2 ,最大的R一定是取当前 ...

  5. [POJ1190]生日蛋糕<DFS>

    题目链接:http://poj.org/problem?id=1190 题看上去确实很复杂 涉及到半径面积这些,其实看着真的很头疼 但是除去这些就是剪枝优化的dfs算法 #include<cst ...

  6. 生日蛋糕 (poj1190) (dfs剪枝)

    [题目描述] 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为 ...

  7. poj1190 生日蛋糕(深搜+剪枝)

    题目链接:poj1190 生日蛋糕 解题思路: 深搜,枚举:每一层可能的高度和半径 确定搜索范围:底层蛋糕的最大可能半径和最大可能高度 搜索顺序:从底层往上搭蛋糕,在同一层尝试时,半径和高度都是从大到 ...

  8. *HDU1455 DFS剪枝

    Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  9. POJ 3009 DFS+剪枝

    POJ3009 DFS+剪枝 原题: Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 16280 Acce ...

随机推荐

  1. 如何实现一个php框架系列文章【1】如何组织文件

    1. 组织文件布局应该考虑什么问题 前后端分离 各业务模块分离但方便互相调用 上传文件安全性 方便接入第三方类库 如图所示 框架入口文件 uct/index.php 框架目录         uct/ ...

  2. 从零开始学 Java - Spring MVC 统一异常处理

    看到 Exception 这个单词都心慌 如果有一天你发现好久没有看到Exception这个单词了,那你会不会想念她?我是不会的.她如女孩一样的令人心动又心慌,又或者你已经练功到了孤独求败,等了半辈子 ...

  3. 利用SCORE法则来总结一次偷懒的单元测试过程

    最近遇到一个单元测试的问题,本周正好学个了一个SCORE法则,这里正好练练手应用此法则将问题的前因后果分享给大家. S:背景  代码要有单元测试,检测的标准就是统计代码的单元测试覆盖率,程序员需要达到 ...

  4. 新建 .NET Core 项目 -- Hello World!

    一.开发工具安装 1.可选模式一 (不推荐,此为Windows开发方式) 安装 Visual Studio 2015 / Visual Studio 2015 Update 3 / .NET Core ...

  5. [Cordova] 手机网页里的1px

    [Cordova] 手机网页里的1px 1px的显示 Cordova让开发人员可以使用HTML页面,来开发APP的显示内容.但是在手机上,HTML页面里定义的1px,并不是直接对应到手机屏幕的一个像素 ...

  6. SQL 常识

    1.varchar 与 nvarchar 的区别? varchar(n):长度为 n 个字节的可变长度且非 Unicode 的字符数据.n 必须是一个介于 1 和 8,000 之间的数值.存储大小为输 ...

  7. For each循环中使用remove方法。

    List<String> list =new ArrayList<String>(); list.add("boss"); list.add("g ...

  8. 【转】单例模式(singletion)

    单例模式(Singleton) 原地址:http://www.cnblogs.com/BoyXiao/archive/2010/05/07/1729376.html 首先来明确一个问题,那就是在某些情 ...

  9. Python绘制PDF文件~超简单的小程序

    Python绘制PDF文件 项目简介 这次项目很简单,本次项目课,代码不超过40行,主要是使用 urllib和reportlab模块,来生成一个pdf文件. reportlab官方文档 http:// ...

  10. js 多选 反选

    //$(".435__1").attr("checked", true); //$(".435__0").removeAttr(" ...