The cows are going to space! They plan to achieve orbit by building a sort of space elevator: a giant tower of blocks. They have K (1 <= K <= 400) different types of blocks with which to build the tower. Each block of type i has height h_i (1 <= h_i <= 100) and is available in quantity c_i (1 <= c_i <= 10). Due to possible damage caused by cosmic rays, no part of a block of type i can exceed a maximum altitude a_i (1 <= a_i <= 40000).

Help the cows build the tallest space elevator possible by stacking blocks on top of each other according to the rules.

Input

* Line 1: A single integer, K

* Lines 2..K+1: Each line contains three space-separated integers: h_i, a_i, and c_i. Line i+1 describes block type i.

Output

* Line 1: A single integer H, the maximum height of a tower that can be built

Sample Input

3
7 40 3
5 23 8
2 52 6

Sample Output

48

Hint

OUTPUT DETAILS:

From the bottom: 3 blocks of type 2, below 3 of type 1, below 6 of type 3. Stacking 4 blocks of type 2 and 3 of type 1 is not legal, since the top of the last type 1 block would exceed height 40.

代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<cmath> const int maxn=4e4+;
typedef long long ll;
using namespace std;
struct node
{
int h,a,c;
}p[maxn];
int dp[maxn];
bool cmp(node x,node y)
{
return x.a<y.a;
}
int main()
{
int K;
cin>>K;
for(int t=;t<=K;t++)
{
scanf("%d%d%d",&p[t].h,&p[t].a,&p[t].c);
}
sort(p+,p+K+,cmp);
for(int t=;t<=K;t++)
{
for(int j=;j<=p[t].c;j++)
{
for(int k=p[t].a;k>=p[t].h;k--)
{
dp[k]=max(dp[k],dp[k-p[t].h]+p[t].h);
}
}
}
int ans=;
for(int t=;t<=p[K].a;t++)
{
ans=max(ans,dp[t]);
}
printf("%d\n",ans); return ;
}

D - 英文题 (多组背包)的更多相关文章

  1. hdu4003详解(树形dp+多组背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4003 Find Metal Mineral Time Limit: 2000/1000 MS (Jav ...

  2. 【js】Leetcode每日一题-子数组异或查询

    [js]Leetcode每日一题-子数组异或查询 [题目描述] 有一个正整数数组 arr,现给你一个对应的查询数组 queries,其中 queries[i] = [Li, Ri]. 对于每个查询 i ...

  3. ACboy needs your help-分组背包模板题

    id=17676" target="_blank" style="color:blue; text-decoration:none">ACboy ...

  4. 蓝桥杯第十届真题B组(2019年)

    2019年第十届蓝桥杯大赛软件类省赛C/C++大学B组# 试题 A:组队# 本题总分:5分[问题描述]作为篮球队教练,你需要从以下名单中选出 1号位至 5号位各一名球员,组成球队的首发阵容.每位球员担 ...

  5. HD1712ACboy needs your help(纯裸分组背包)

    ACboy needs your help Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  6. 洛谷P1858 多人背包 多人背包板子题/多人背包学习笔记

    ,,,本来自以为,我dp学得还挺好的 然后今天一考发现都不会啊QAQ 连最基础的知识点都不清楚啊QAQ 所以就来写个题解嘛! 先放下板子题 其实我jio得,这题只要大概了解方法就不是很难鸭,,,毕竟是 ...

  7. poj 1742(好题,楼天城男人八题,混合背包)

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 33269   Accepted: 11295 Descripti ...

  8. dp--分组背包 P1757 通天之分组背包

    题目背景 直达通天路·小A历险记第二篇 题目描述 自01背包问世之后,小A对此深感兴趣.一天,小A去远游,却发现他的背包不同于01背包,他的物品大致可分为k组,每组中的物品相互冲突,现在,他想知道最大 ...

  9. 基于Visual C++2013拆解世界五百强面试题--题8-数组的排序和查找

    用三种方法实现对一个数组的排序,并设计一个函数实现数的查找,要求时间越短越好,空间占用越少越好. 对数组排序的方法很多,我们选比较常用和容易的三种排序,直接插入排序,冒泡排序和快速排序. 直接插入排序 ...

随机推荐

  1. 当面试官问我ArrayList和LinkedList哪个更占空间时,我这么答让他眼前一亮

    前言 今天介绍一下Java的两个集合类,ArrayList和LinkedList,这两个集合的知识点几乎可以说面试必问的. 对于这两个集合类,相信大家都不陌生,ArrayList可以说是日常开发中用的 ...

  2. LinuX操作系统基础------>软件的安装方式,chmod权限,vi编辑器的使用

    RPM包管理 -rpm命令管理 RPM包管理 -yum在线管理 文件权限管理 vi编辑器的使用和常用的快捷键 1.RPM包管理: 一种用于互联网下载包的打包及安装工具,RPM包管理分为rpm命令管理和 ...

  3. Python 面向对象之高级编程

    7.面向对象高级编程 7.1使用__slots__ python动态语言,new 对象后绑定属性和方法 Tip:给一个实例绑定的方法,对其他对象无效.可以通过对class绑定后,所有对象可以调用该方法 ...

  4. 2018-04-19:innodb和myisam区别

    福哥答案2020-04-19:

  5. C#LeetCode刷题之#232-用栈实现队列​​​​​​​​​​​​​​(Implement Queue using Stacks)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4108 访问. 使用栈实现队列的下列操作: push(x) -- ...

  6. .NET或.NET Core Web APi基于tus协议实现断点续传

    前言 前两天我采用技巧式方案基本实现大文件分片上传,这里只是重点在于个人思路和亲身实践,若在实际生产环境要求比较高的话肯定不行,仍存在一些问题需要深入处理,本文继续在之前基础上给出基于tus协议的轮子 ...

  7. Vue CLI3 移动端适配 【px2rem 或 postcss-plugin-px2rem】

    Vue CLI3 移动端适配 [px2rem 或 postcss-plugin-px2rem] 今天,我们使用Vue CLI3 做一个移动端适配 . 前言 首先确定你的项目是Vue CLI3版本以上的 ...

  8. Golang gRPC学习(04): Deadlines超时限制

    为什么要使用Deadlines 当我们使用gRPC时,gRPC库关系的是连接,序列化,反序列化和超时执行.Deadlines 允许gRPC客户端设置自己等待多长时间来完成rpc操作,直到出现这个错误 ...

  9. SSRF 跨站请求伪造学习笔记

    参考文章: 了解SSRF,这一篇就足够了 SSRF 学习之路 SSRF绕过方法总结 Weblogic SSRF漏洞 What-是什么 SSRF(Server-Side Request Forgery) ...

  10. Magento 2 instantiate object by Factory Objects

    magento2的Factory Objects是用来实例化non-injectable classes,目前还不知道什么叫non-injectable classes. 可以用它来实例化Helper ...