[

]

M

a

t

r

i

x

P

o

w

e

r

S

e

r

i

e

s

[矩阵乘法]Matrix Power Series

[矩阵乘法]MatrixPowerSeries

Description

Given a

n

×

n

n × n

n×n matrix

A

A

A and a positive integer

k

k

k, find the sum

S

=

A

+

A

2

+

A

3

+

.

.

.

+

A

k

S = A + A^2 + A^3 + ... + A^k

S=A+A2+A3+...+Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers

n

n

n (

n

n

n ≤

30

30

30),

k

k

k (

k

k

k ≤

1

0

9

10^9

109) and

m

m

m (

m

m

m <

1

0

4

10^4

104). Then follow n lines each containing

n

n

n nonnegative integers below

32

,

768

32,768

32,768, giving

A

A

A’s elements in row-major order.

Output

Output the elements of

S

S

S modulo m in the same way as

A

A

A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3


题目解析

为了降低时间复杂度,考虑矩阵乘法

然后可以构造出一个

2

r

2r

2r阶的矩阵

T

T

T

A

E

O

E

\begin{vmatrix} A & E \\ O & E \\ \end{vmatrix}

∣∣∣∣​AO​EE​∣∣∣∣​

其中:

A

A

A为输入的矩阵(

A

A

A是

r

r

r阶的矩阵)

O

O

O为全零矩阵 (

O

O

O是值全为

0

0

0的

r

r

r阶矩阵)

E

E

E为对角线矩阵(

E

E

E是除了对角线为

1

1

1,其他的都为

0

0

0的矩阵)

然后可以得出:

S

[

n

1

]

,

A

n

=

S

[

n

2

]

,

A

n

1

T

|S[n-1],A^n| = |S[n-2],A^{n-1}| * T

∣S[n−1],An∣=∣S[n−2],An−1∣∗T

然后通过将矩阵乘法的结合律通过快速幂来计算出

T

n

T^n

Tn再可

A

T

n

A*T^n

A∗Tn来求得答案


关于

T

T

T矩阵的实现

//全零矩阵的实现
//matrix 是已经定义的结构体,n和m是表示矩阵的长和宽,t是矩阵的值
matrix O (int re)
{
matrix c;
c.n = c.m = re;
for (int i = 1; i <= re; ++ i)
for (int j = 1; j <= re; ++ j)
c.t[i][j] = 0;
return c;
}
//对角线矩阵的实现
//matrix 是已经定义的结构体,n和m是表示矩阵的长和宽,t是矩阵的值,O函数为前文定义的全零矩阵
matrix E (int re)
{
matrix c;
c.n = c.m = re;
c = O (re);
for (int i = 1; i <= re; ++ i)
c.t[i][i] = 1;
return a;
}
//关于矩阵的合并。n,m,t,O(),E()前文已述,T1就是前文提到的T矩阵,re为前文提到的r,a是前文提到的A
matrix hb (int re)
{
t1.n = t1.m = re * 2;
for (int i = 1; i <= re; ++ i)
for (int j = 1; j <= re; ++ j)
t1.t[i][j] = a.t[i][j];
matrix er = E (re);
for (int i = 1; i <= re; ++ i)
for (int j = re + 1; j <= re * 2; ++ j)
t1.t[i][j] = er.t[i][j];
for (int i = re + 1; i <= re * 2; ++ i)
for (int j = re + 1; j <= re * 2; ++ j)
t1.t[i][j] = er.t[i][j];
for (int i = re + 1; i <= re * 2; ++ i)
for (int j = 1; j <= re; ++ j)
t1.t[i][j] = 0;
}

[矩阵乘法] PKU3233 Matrix Power Series的更多相关文章

  1. Poj 3233 Matrix Power Series(矩阵乘法)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...

  2. POJ 3233 Matrix Power Series (矩阵乘法)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 11954   Accepted:  ...

  3. 线性代数(矩阵乘法):POJ 3233 Matrix Power Series

    Matrix Power Series   Description Given a n × n matrix A and a positive integer k, find the sum S = ...

  4. 构造矩阵解决这个问题 【nyoj299 Matrix Power Series】

    矩阵的又一个新使用方法,构造矩阵进行高速幂. 比方拿 nyoj299 Matrix Power Series 来说 给出这样一个递推式: S = A + A2 + A3 + - + Ak. 让你求s. ...

  5. [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15417   Accepted:  ...

  6. [POJ3233]Matrix Power Series 分治+矩阵

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [POJ3233]Matrix Power Series 分治+矩阵 题目大意 A为n×n(n<= ...

  7. C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速

    Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...

  8. POJ 3233 Matrix Power Series(矩阵快速幂)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 19338 Accepted: 8161 ...

  9. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

随机推荐

  1. SVG & Sprite & symbol & use

    SVG & Sprite & symbol & use https://www.zhangxinxu.com/sp/svgo/ https://www.zhangxinxu.c ...

  2. Masterboxan INC金融:在区块链技术基础上推动业务模式的变革创新

    10月初,2020年国际区块链技术与应用大会在硅谷开幕,全球内外区块链技术项目团队.行业领导.专家等共聚一堂,围绕区块链技术与应用展开讨论交流.美国Masterboxan INC万事达资产管理有限公司 ...

  3. 阿里面试这样问:redis 为什么把简单的字符串设计成 SDS?

    2021开工第一天,就有小伙伴私信我,还给我分享了一道他面阿里的redis题(这家伙绝比已经拿到年终奖了),我看了以后觉得挺有意思,题目很简单,是那种典型的似懂非懂,常常容易被大家忽略的问题.这里整理 ...

  4. node_puppeteer无界爬虫

    环境:node----v14.5.0 vscode----2019 依赖库 (需要自行设置好目录结构,否则会报目录错误) const puppeteer = require("puppete ...

  5. SpringCloud Stream

    1.介绍 官网:https://www.springcloud.cc/spring-cloud-dalston.html#_spring_cloud_stream 1.1定义 是一个构建消息驱动微服务 ...

  6. Java后台防止客户端重复请求、提交表单

    前言 在Web / App项目中,有一些请求或操作会对数据产生影响(比如新增.删除.修改),针对这类请求一般都需要做一些保护,以防止用户有意或无意的重复发起这样的请求导致的数据错乱. 常见处理方案 1 ...

  7. Linux 安装python 模块及库

    转载于https://blog.csdn.net/csdn_am/article/details/79924744 有时我们使用下载python 自带的pip 安装一些工具包时,会报如下错误 找不到满 ...

  8. 剑指 Offer 51. 数组中的逆序对 + 归并排序 + 树状数组

    剑指 Offer 51. 数组中的逆序对 Offer_51 题目描述 方法一:暴力法(双层循环,超时) package com.walegarrett.offer; /** * @Author Wal ...

  9. Mongo的相关语法

    mongod的条件操作符 $gt -------- greater than > $gte --------- gt equal >= $lt -------- less than < ...

  10. 再探命令行传参之c与python

    继上一次java命令行传参 python sys模块包括了一组非常实用的服务,内含很多函数方法和变量,用来处理Python运行时配置以及资源,从而可以与前当程序之外的系统环境交互,如:python解释 ...