期望

顺着上一篇文章《Hadoop学习之第一个MapReduce程序》中遗留的分片疑惑,探究TextInputFormat的分片逻辑。

第一步

上Apache官网下载实验所使用的Hadoop3.2.0版本源码,导入IntelliJ Idea中,不赘述了。下载链接:https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.2.0/hadoop-3.2.0-src.tar.gz

第二步

TextInputFormat

定位到我们疑惑的起端TextInputFormat类,可以看到他的代码非常简单,只有两个方法,且都是重载/实现的父类/接口中的方法,其中有一个与分片有关系,叫isSplitable,他根据一个输入的路径,判断该文件是否可以切分。做法也比较浅显,根据文件后缀名得出其对应的压缩方式,若其压缩编码类实现了SplittableCompressionCodec接口,即认为文件时可切分的。代码如下:

  protected boolean isSplitable(JobContext context, Path file) {
final CompressionCodec codec =
new CompressionCodecFactory(context.getConfiguration()).getCodec(file);
if (null == codec) {
return true;
}
return codec instanceof SplittableCompressionCodec;
}

FileInputFormat

TextInputFormat中比没有看到最关键的代码,只得接着往他的父类中寻找。打开父类FileInputFormat,看到跟分片有关的方法有如下图所示

通过方法名、输入输出类型,可以很自然的发现,最接近我们想法的就是 getSplits方法了,返回一个输入分片的集合,我们直接找到该方法,其代码如下:

   /**
* Generate the list of files and make them into FileSplits.
* @param job the job context
* @throws IOException
*/
public List<InputSplit> getSplits(JobContext job) throws IOException {
StopWatch sw = new StopWatch().start();
long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
long maxSize = getMaxSplitSize(job); // generate splits
List<InputSplit> splits = new ArrayList<InputSplit>();
List<FileStatus> files = listStatus(job); boolean ignoreDirs = !getInputDirRecursive(job)
&& job.getConfiguration().getBoolean(INPUT_DIR_NONRECURSIVE_IGNORE_SUBDIRS, false);
for (FileStatus file: files) {
if (ignoreDirs && file.isDirectory()) {
continue;
}
Path path = file.getPath();
long length = file.getLen();
if (length != 0) {
BlockLocation[] blkLocations;
if (file instanceof LocatedFileStatus) {
blkLocations = ((LocatedFileStatus) file).getBlockLocations();
} else {
FileSystem fs = path.getFileSystem(job.getConfiguration());
blkLocations = fs.getFileBlockLocations(file, 0, length);
}
if (isSplitable(job, path)) {
long blockSize = file.getBlockSize();
long splitSize = computeSplitSize(blockSize, minSize, maxSize); long bytesRemaining = length;
while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, splitSize,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
bytesRemaining -= splitSize;
} if (bytesRemaining != 0) {
int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
blkLocations[blkIndex].getHosts(),
blkLocations[blkIndex].getCachedHosts()));
}
} else { // not splitable
if (LOG.isDebugEnabled()) {
// Log only if the file is big enough to be splitted
if (length > Math.min(file.getBlockSize(), minSize)) {
LOG.debug("File is not splittable so no parallelization "
+ "is possible: " + file.getPath());
}
}
splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(),
blkLocations[0].getCachedHosts()));
}
} else {
//Create empty hosts array for zero length files
splits.add(makeSplit(path, 0, length, new String[0]));
}
}
// Save the number of input files for metrics/loadgen
job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
sw.stop();
if (LOG.isDebugEnabled()) {
LOG.debug("Total # of splits generated by getSplits: " + splits.size()
+ ", TimeTaken: " + sw.now(TimeUnit.MILLISECONDS));
}
return splits;
}

(emmm,方法注释更加证实了他就是要找的东西!)

研读以上代码,可以发现,分片逻辑的关键在于得到blockSize、splitSize,得到这两个值后,做的事就是循环“切割”文件了,要弄清的关键点有以下几个:

  1. blockSize是多少?
  2. splitSize是多少?
  3. “切割”判断依据

Q1很明了,由于我们的实验环境并未在配置中指定块大小,所以blockSize为默认值128M。

Q2可以看到splitSize由computeSplitSize方法计算得出,为了方便观看,我把computeSplitSize方法及相关的几个值获取的方法放到一起,如下所示:

  public static final String SPLIT_MAXSIZE = "mapreduce.input.fileinputformat.split.maxsize";
public static final String SPLIT_MINSIZE = "mapreduce.input.fileinputformat.split.minsize"; public static long getMinSplitSize(JobContext job) {
return job.getConfiguration().getLong(SPLIT_MINSIZE, 1L);
} protected long getFormatMinSplitSize() {
return 1;
} public static long getMaxSplitSize(JobContext context) {
return context.getConfiguration().getLong(SPLIT_MAXSIZE,
Long.MAX_VALUE);
} protected long computeSplitSize(long blockSize, long minSize,
long maxSize) {
return Math.max(minSize, Math.min(maxSize, blockSize));
}

由于我并未配置mapreduce.input.fileinputformat.split.maxsize和mapreduce.input.fileinputformat.split.minsize,Configuration中他俩的值即为默认值空和0,所以getMinSplitSize值为1,getMaxSplitSize值为Long.MAX_VALUE,故

splitSize=Math.max(minSize, Math.min(maxSize, blockSize))
=Math.max(, Math.min(Long.MAX_VALUE, * * ))
=Math.max(, * * )
= * *
=blockSize

Q3 “切割”依据即getSplits方法中的循环判断 while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) ,可知常量SPLIT_SLOP值为1.1。

结论

综上所述,TextInputFormat的分片逻辑为:
将文件按块切割,直到文件剩余大小 小于等于 块大小的1.1倍时,将剩余部分(理论上时2个块的数据)作为一个输入分片。

回过头来看《Hadoop学习之第一个MapReduce程序》中的分片问题,文件数为44、块数为61,但是分片数为58,就是因为有三个文件的分块有“小尾巴”,这三个小于等于1.1倍块大小的块与对应文件的上一个块共同组成了一个输入分片。

Hadoop学习之TextInputFormat分片逻辑探究的更多相关文章

  1. Hadoop学习之旅三:MapReduce

    MapReduce编程模型 在Google的一篇重要的论文MapReduce: Simplified Data Processing on Large Clusters中提到,Google公司有大量的 ...

  2. shuffle机制和TextInputFormat分片和读取分片数据(九)

    shuffle机制 1:每个map有一个环形内存缓冲区,用于存储任务的输出.默认大小100MB(io.sort.mb属性),一旦达到阀值0.8(io.sort.spill.percent),一个后台线 ...

  3. Hadoop学习之常用输入输出格式总结

    目的 总结一下常用的输入输出格式. 输入格式 Hadoop可以处理很多不同种类的输入格式,从一般的文本文件到数据库. 开局一张UML类图,涵盖常用InputFormat类的继承关系与各自的重要方法(已 ...

  4. [Hadoop] Hadoop学习历程 [持续更新中…]

    1. Hadoop FS Shell Hadoop之所以可以实现分布式计算,主要的原因之一是因为其背后的分布式文件系统(HDFS).所以,对于Hadoop的文件操作需要有一套全新的shell指令来完成 ...

  5. Hadoop学习(5)-- Hadoop2

    在Hadoop1(版本<=0.22)中,由于NameNode和JobTracker存在单点中,这制约了hadoop的发展,当集群规模超过2000台时,NameNode和JobTracker已经不 ...

  6. Hadoop学习笔记(7) ——高级编程

    Hadoop学习笔记(7) ——高级编程 从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤: 1.输入(input):将输入数据分成一个个split,并将split进一步拆成 ...

  7. 阿里封神谈hadoop学习之路

    阿里封神谈hadoop学习之路   封神 2016-04-14 16:03:51 浏览3283 评论3 发表于: 阿里云E-MapReduce >> 开源大数据周刊 hadoop 学生 s ...

  8. 【Hadoop学习之四】HDFS HA搭建(QJM)

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 由于NameNode对于整个HDF ...

  9. [转帖]hadoop学习笔记:hadoop文件系统浅析

    hadoop学习笔记:hadoop文件系统浅析 https://www.cnblogs.com/sharpxiajun/archive/2013/06/15/3137765.html 1.什么是分布式 ...

随机推荐

  1. 小程序checkbox-group只获取到一个值

    wx:for循环不能写在checkbox-group标签上 wx:for循环不能写在checkbox-group标签上 wx:for循环不能写在checkbox-group标签上 wx:for循环不能 ...

  2. day06总结

    字符串常用操作# ======================================基本使用======================================# 1.用途:记录描述 ...

  3. PowerShell创建参考窗口

    背景 平常我们经常遇到这样一个问题,在使用一个窗口工作时常常需要参考其他窗口的文字或图片,此时就需要频繁切换窗口:或者是看视频时需要参考前面进度的画面:或者是阅读或写文档时需要参考其他位置的文字,这时 ...

  4. 如果你每次面试前都要去背一篇Spring中Bean的生命周期,请看完这篇文章

    前言 当你准备去复习Spring中Bean的生命周期的时候,这个时候你开始上网找资料,很大概率会看到下面这张图: 先不论这张图上是否全面,但是就说这张图吧,你是不是背了又忘,忘了又背? 究其原因在于, ...

  5. Python | Python初学者的自我修养,找到自己的方向

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Python专题的第21篇文章,我们继续多线程的话题. 上周的文章当中我们简单介绍了线程和进程的概念,以及在Python当中如何在主线 ...

  6. node.js02 安装Node环境

    安装Node环境 在node.js01中我大概了解了什么是node.js,这次进入起步阶段,首先要安装下Node环境. 开始安装 查看当前Node环境的版本号 win+r输入cmd进入命令行,输入no ...

  7. Elasticsearch7.X ILM索引生命周期管理(冷热分离)

    Elasticsearch7.X ILM索引生命周期管理(冷热分离) 一.“索引生命周期管理”概述 Elasticsearch索引生命周期管理指:Elasticsearch从设置.创建.打开.关闭.删 ...

  8. python多线程之Threading

    什么是线程? 线程是操作系统内核调度的基本单位,一个进程中包含一个或多个线程,同一个进程内的多个线程资源共享,线程相比进程是“轻”量级的任务,内核进行调度时效率更高. 多线程有什么优势? 多线程可以实 ...

  9. java环境搭建--Windows 10下java环境搭建

    1.下载jdk:https://www.oracle.com/java/technologies/javase-jdk8-downloads.html(注意需要注册登录Oracle账号) 2.安装此处 ...

  10. 字符编码笔记:ASCII,Unicode 和 UTF-8个人理解

    一.ASCII 码 我们知道,计算机内部,所有信息最终都是一个二进制值.每一个二进制位(bit)有0和1两种状态,因此八个二进制位(字节(Byte )是计算机信息技术用于计量存储容量的一种计量单位,作 ...