传送门

Solution

把状态都记上暴力转移即可

Code

//By Menteur_Hxy
#include <queue>
#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define Re register
#define Ms(a,b) memset(a,(b),sizeof(a))
#define Fo(i,a,b) for(Re int i=(a),_=(b);i<=_;i++)
#define Ro(i,a,b) for(Re int i=(b),_=(a);i>=_;i--)
using namespace std;
typedef long long LL;
typedef pair<int,int> PII; inline LL read() {
LL x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int N=51;
int n,m,t,ans;
int f[N][N][N*N][2];
char s[N]; int main() {
n=read(),m=read(),t=read();
Fo(i,1,n) {
scanf("%s",s+1);
Fo(j,1,m) Fo(k,1,t) {
if(j==1) {
f[i][j][k][0]=max(f[i-1][m][k-1][0],f[i-1][m][k-1][1]);
f[i][j][k][1]=f[i][j][k][0]+1; } else {
if(s[j]==s[j-1]) {
f[i][j][k][1]=max(f[i][j-1][k][1],f[i][j-1][k-1][0])+1;
f[i][j][k][0]=max(f[i][j-1][k][0],f[i][j-1][k-1][1]);
} else {
f[i][j][k][1]=max(f[i][j-1][k-1][1],f[i][j-1][k][0])+1;
f[i][j][k][0]=max(f[i][j-1][k-1][0],f[i][j-1][k][1]);
}
}
ans=max(ans,max(f[i][j][k][0],f[i][j][k][1]));
}
}
printf("%d",ans);
return 0;
}

[luogu4158 SCOI2009] 粉刷匠(dp)的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  2. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  3. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  4. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  5. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  6. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  7. 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)

    [SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...

  8. 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠

    P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...

  9. bzoj1296: [SCOI2009]粉刷匠(DP)

    1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...

随机推荐

  1. double x = 10 ,y = 0;y = x % 2; 这个表达式正确吗?

    The remainder function and % operator. 以下这段代码过不了编译的(gcc) #include <stdio.h> #include <fenv. ...

  2. spark之map与flatMap差别

    scala> val m = List(List("a","b"),List("c","d")) m: List[ ...

  3. luogu2331 [SCOI2005]最大子矩阵

    题目大意 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠.1≤n≤100,1≤m≤2,1≤k≤10. 思路 #include < ...

  4. ListView实现简单列表

    ListView实现简单列表 效果图: 啥也没干的ListView张这样: fry.Activity01 package fry; import com.example.ListView.R; imp ...

  5. Spring Boot 特性 —— SpringApplication

    转自:https://blog.csdn.net/cqdz_dj/article/details/52910317

  6. 三个命令解决ASTGO服务器重启后各种问题

    SSH 命令方式登录到服务器,依次执行下面三个命令. service httpd restart service mysqld restart safe_asterisk 前面两个命令提示无效,尝试从 ...

  7. linux下安装rabbitmq以及在spring中进行集成

    ### 一.安装erlang 1. yum install ncurses-devel 2. ./configure --prefix=/usr/local/erlang20 --without-ja ...

  8. JavaScript学习杂记

    1.DOM层级:document(document) --> doctype,documentElement(html) --> head,body(body). 2.offset, cl ...

  9. Linux 安装配置JDK 、 MySQL 、nginx

    今天我来讲一下在Linux下各环境的搭建,主要就讲一下jdk.MySQL.和一个代理服务器nginx 1. jdk的安装配置 1)卸载自带openjdk 当我们拿到一个全新的ECS的时候上面有的会自带 ...

  10. Redis的事务讲解

    1. Redis事务的概念 是什么: 可以一次执行多个命令,本质是一组命令的集合.一个事务中的所有命令都会序列化,按顺序串行化的执行而不会被其他命令插入 能干嘛:一个队列中,一次性.顺序性.排他性的执 ...