[luogu4158 SCOI2009] 粉刷匠(dp)
Solution
把状态都记上暴力转移即可
Code
//By Menteur_Hxy
#include <queue>
#include <cmath>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define Re register
#define Ms(a,b) memset(a,(b),sizeof(a))
#define Fo(i,a,b) for(Re int i=(a),_=(b);i<=_;i++)
#define Ro(i,a,b) for(Re int i=(b),_=(a);i>=_;i--)
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
inline LL read() {
LL x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
const int N=51;
int n,m,t,ans;
int f[N][N][N*N][2];
char s[N];
int main() {
n=read(),m=read(),t=read();
Fo(i,1,n) {
scanf("%s",s+1);
Fo(j,1,m) Fo(k,1,t) {
if(j==1) {
f[i][j][k][0]=max(f[i-1][m][k-1][0],f[i-1][m][k-1][1]);
f[i][j][k][1]=f[i][j][k][0]+1;
} else {
if(s[j]==s[j-1]) {
f[i][j][k][1]=max(f[i][j-1][k][1],f[i][j-1][k-1][0])+1;
f[i][j][k][0]=max(f[i][j-1][k][0],f[i][j-1][k-1][1]);
} else {
f[i][j][k][1]=max(f[i][j-1][k-1][1],f[i][j-1][k][0])+1;
f[i][j][k][0]=max(f[i][j-1][k-1][0],f[i][j-1][k][1]);
}
}
ans=max(ans,max(f[i][j][k][0],f[i][j][k][1]));
}
}
printf("%d",ans);
return 0;
}
[luogu4158 SCOI2009] 粉刷匠(dp)的更多相关文章
- BZOJ 1296: [SCOI2009]粉刷匠( dp )
dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] ) ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...
- [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2184 Solved: 1259[Submit][Statu ...
- Luogu P4158 [SCOI2009]粉刷匠(dp+背包)
P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...
- BZOJ1296: [SCOI2009]粉刷匠 DP
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
- BZOJ 1296: [SCOI2009]粉刷匠 分组DP
1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...
- 1296: [SCOI2009]粉刷匠[多重dp]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1919 Solved: 1099[Submit][Statu ...
- 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)
[SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...
- 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠
P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...
- bzoj1296: [SCOI2009]粉刷匠(DP)
1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...
随机推荐
- double x = 10 ,y = 0;y = x % 2; 这个表达式正确吗?
The remainder function and % operator. 以下这段代码过不了编译的(gcc) #include <stdio.h> #include <fenv. ...
- spark之map与flatMap差别
scala> val m = List(List("a","b"),List("c","d")) m: List[ ...
- luogu2331 [SCOI2005]最大子矩阵
题目大意 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠.1≤n≤100,1≤m≤2,1≤k≤10. 思路 #include < ...
- ListView实现简单列表
ListView实现简单列表 效果图: 啥也没干的ListView张这样: fry.Activity01 package fry; import com.example.ListView.R; imp ...
- Spring Boot 特性 —— SpringApplication
转自:https://blog.csdn.net/cqdz_dj/article/details/52910317
- 三个命令解决ASTGO服务器重启后各种问题
SSH 命令方式登录到服务器,依次执行下面三个命令. service httpd restart service mysqld restart safe_asterisk 前面两个命令提示无效,尝试从 ...
- linux下安装rabbitmq以及在spring中进行集成
### 一.安装erlang 1. yum install ncurses-devel 2. ./configure --prefix=/usr/local/erlang20 --without-ja ...
- JavaScript学习杂记
1.DOM层级:document(document) --> doctype,documentElement(html) --> head,body(body). 2.offset, cl ...
- Linux 安装配置JDK 、 MySQL 、nginx
今天我来讲一下在Linux下各环境的搭建,主要就讲一下jdk.MySQL.和一个代理服务器nginx 1. jdk的安装配置 1)卸载自带openjdk 当我们拿到一个全新的ECS的时候上面有的会自带 ...
- Redis的事务讲解
1. Redis事务的概念 是什么: 可以一次执行多个命令,本质是一组命令的集合.一个事务中的所有命令都会序列化,按顺序串行化的执行而不会被其他命令插入 能干嘛:一个队列中,一次性.顺序性.排他性的执 ...