对Keras提供的对各种层的抽象进行相对全面的概括

1 基础常用层

名称 作用 原型参数
Dense 实现全连接层 Dense(units,activation,use_bias=True, kernel_initializer=’glorot_uniform’, bias_initializer=’zeros’)
Activation 对上层输出应用激活函数 Activation(activation)
Dropout 对上层输出应用dropout以防止过拟合 Dropout(ratio)
Flatten 对上层输出一维化 Flatten()
Reshape 对上层输出reshape Reshape(target_shape)
Permute 对输入的维度按照指定的顺序交换并重排数据 Permute(dims)
RepeatVector 将输入重复若干次后进行输出 RepeatVector(n)
Lambda 对输入施加TF/TH表达式后输出 Lambda(function, output_shape,arguments=None)
Masking 屏蔽指定的序列值 Masking(mask_value=0.0)

PS1:Dense()参数说明

名称 说明
units 层中单元数,也是输出维度
activation 激活函数
use_bias 是否使用偏置
kernel_initializer 权值初始化方法
bias_initalizer 偏置初始化方法
kernel_regularizer 权值规范化方法
bias_regularizer 偏置规范化方法
activity_regularizer  
kernel_constraints 权值约束
bias_constraints 偏置约束

PS2: 预置激活函数/初始化器/正则化器说明

激活函数 初始化器 正则化器
softmax Zeros 全0 l1
elu Ones 全1 l2
softplus Constant 常数 l1_l2
softsign RandomNormal 正态分布  
relu RandomUniform 平均分布  
tanh TruncatedNormal 无尾正态  
sigmoid Orthogonal 正交矩阵  
hard_sigmoid Identity 单位矩阵  
linear glorot_normal  

2 卷积层

层名 作用 原型
Conv1D 1维卷积层 Conv1D(filters, kernel_size, strides=1, padding=’valid’)
Conv2D 2维卷积层 Conv2D(filters, kernel_size, strides=(1, 1), padding=’valid’,dilation_rate=(1, 1))
UpSampling1D 1维上采样,将数据重复指定的次数 UpSampling2D(size=2)
UpSampling2D 2维上采样,将数据在2个维度上重复指定的次数 UpSampling2D(size=(2, 2))
ZeroPadding2D 边界填充0 ZeroPadding2D(padding=(1, 1))

参数说明:

名称 说明
filters 卷积核的数目(即输出的维度)
kernel_size 卷积核的宽度和长度。如为单个整数,表示在各个空间维度的相同长度
strides 为卷积的步长。如为单个整数,则表示在各个空间维度的相同步长
padding 补0策略,为“valid”, “same”
activation  
data_format channels_first或channels_last之一,代表图像的通道维的位置,默认为channels_last
use_bias  
kernel_initializer  
bias_initializer  
kernel_regularizer  
bias_regularizer  
activity_regularizer  
kernel_constraints  
bias_constraints  

3 池化层

层名 作用 原型
MaxPooling1D 对1维输入进行最大值池化过滤 MaxPooling1D(pool_size=2, strides=None, padding=’valid’)
AveragePooling1D 对1维输入进行平均池化过滤 AveragePooling1D(pool_size=2, strides=None, padding=’valid’)
MaxPooling2D 对2维输入进行最大值池化过滤 MaxPooling2D(pool_size=(2, 2), strides=None, padding=’valid’, data_format=None)
AveragePooling2D 对3维输入进行平均池化过滤 AveragePooling2D(pool_size=(2, 2), strides=None, padding=’valid’, data_format=None)
GlobalMaxPooling1D 对1维输入进行全局最大值池化过滤 GlobalMaxPooling1D()
GlobalAveragePooling1D 对1维输入进行全局平均值池化过滤 GlobalAveragePooling1D()
GlobalMaxPooling2D 对2维输入进行全局最大值池化过滤 GlobalMaxPooling2D()
GlobalAveragePooling2D 对2维输入进行全局平均值池化过滤 GlobalAveragePooling2D()

2d参数说明

 名称 说明
pool_size 过滤器的大小,通常取(2,2)或(3,3)
strides 过滤器的移动步长,取2使得输出shape缩小一半
padding valid为1填充,same为0填充
data_format 字符串,channels_first或channels_last之一

4 循环层

名称 作用 原型参数
SimpleRNN 全连接RNN网络 SimpleRNN(units, activation=’tanh’, use_bias=True, kernel_initializer=’glorot_uniform’, recurrent_initializer=’orthogonal’, bias_initializer=’zeros’,dropout=0.0, recurrent_dropout=0.0))
GRU 门限循环单元层 GRU(units, activation=’tanh’, recurrent_activation=’hard_sigmoid’, use_bias=True, kernel_initializer=’glorot_uniform’, recurrent_initializer=’orthogonal’, bias_initializer=’zeros’, dropout=0.0, recurrent_dropout=0.0)
LSTM 长短期记忆模型层 LSTM(units, activation=’tanh’, recurrent_activation=’hard_sigmoid’, use_bias=True, kernel_initializer=’glorot_uniform’, recurrent_initializer=’orthogonal’, bias_initializer=’zeros’, unit_forget_bias=True, dropout=0.0, recurrent_dropout=0.0)

5 嵌入层

名称 作用 原型参数
Embedding 嵌入层将输入中的整数转换为向量,导致原维度+1 EmbeddingEmbedding(input_dim, output_dim, embeddings_initializer=’uniform’, embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None)

参数说明:
input_dim: 字典长度,即输入数据最大下标+1
output_dim:全连接嵌入的维度
input_length:当输入序列的长度固定时,该值为其长度。如果要在该层后接Flatten层,然后接Dense层,则必须指定该参数,否则Dense层的输出维度无法自动推断。

Keras学习系列——神经网络层组件的更多相关文章

  1. Java并发包源码学习系列:同步组件CountDownLatch源码解析

    目录 CountDownLatch概述 使用案例与基本思路 类图与基本结构 void await() boolean await(long timeout, TimeUnit unit) void c ...

  2. Java并发包源码学习系列:同步组件CyclicBarrier源码解析

    目录 CyclicBarrier概述 案例学习 类图结构及重要字段 内部类Generation及相关方法 void reset() void breakBarrier() void nextGener ...

  3. Java并发包源码学习系列:同步组件Semaphore源码解析

    目录 Semaphore概述及案例学习 类图结构及重要字段 void acquire() 非公平 公平策略 void acquire(int permits) void acquireUninterr ...

  4. 深度学习之TensorFlow构建神经网络层

    深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...

  5. DocX开源WORD操作组件的学习系列四

    DocX学习系列 DocX开源WORD操作组件的学习系列一 : http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_sharp_001_docx1.htm ...

  6. DocX开源WORD操作组件的学习系列三

    DocX学习系列 DocX开源WORD操作组件的学习系列一 : http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_sharp_001_docx1.htm ...

  7. DocX开源WORD操作组件的学习系列二

    DocX学习系列 DocX开源WORD操作组件的学习系列一 : http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_sharp_001_docx1.htm ...

  8. DocX开源WORD操作组件的学习系列一

    DocX学习系列 DocX开源WORD操作组件的学习系列一 : http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_sharp_001_docx1.htm ...

  9. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

随机推荐

  1. log日志拦截

    简介 主要记录一下项目中的日志拦截和异常拦截,由于之前公司项目为单体项目,所使用的日志拦截较为简单,只是用拦截器进行前后对日志的拦截,异常拦截直接使用@ExceptionHandler,而现在公司接口 ...

  2. 盘它!!一步到位,Tensorflow 2的实战 !!LSTM下的股票预测(附详尽代码及数据集)

    关键词:tensorflow2.LSTM.时间序列.股票预测 Tensorflow 2.0发布已经有一段时间了,各种新API的确简单易用,除了官方文档以外能够找到的学习资料也很多,但是大都没有给出实战 ...

  3. es7中数组如何判断元素是否存在

    const arr = [1,2,3,4,5,6] console.log(arr.includes(4)) //true

  4. [bzoj2115] [洛谷P4151] [Wc2011] Xor

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  5. RainbowPlan-Alpha版本发布2

    博客介绍 这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/GeographicInformationScience/ 这个作业要求在哪里 https:// ...

  6. Qt常用UI控件读取、写入方法

    本文用途:快速备忘,方便调用,写熟了自然就记下了. [1.标签label] 读取:ui->label->text() 写入:ui->label->setText("p ...

  7. Python学习初级python3.6的安装配置

    首先我们来安装python 1.首先进入网站下载:点击打开链接(或自己输入网址https://www.python.org/downloads/),进入之后如下图,选择图中红色圈中区域进行下载. 2. ...

  8. php--->自己封装的简易版mvc框架

    最近根据自己的理解,封装了一个自己的框架,来重新系统化梳理自己对mvc框架的理解:后续会陆续添加各种新的功能. 欢迎指点交流. GitHub:https://github.com/Frankltf/m ...

  9. linux-->yii2报yii\db\Exception错

    linux 中yii2 yii\db\Exception报错 报错显示:Database Exception – yii\db\Exception SQLSTATE[HY000] [2002] No ...

  10. Docker(一) 简介

    简介 Docker是一款针对程序开发人员和系统管理员来开发.部署.运行应用的一款虚拟化平台.Docker 可以让你像使用集装箱一样快速的组合成应用,并且可以像运输标准集装箱一样,尽可能的屏蔽代码层面的 ...