#knn介绍 更多参考百度介绍


算法思想:给定一个带标检的训练数据集(就是带分类结果的样本),对于一个新的输入实例,我们在训练数据集中以某种距离度量方式找出与该输入实例距离最近邻的k个实例。
找出这k个实例(这也是knn中k的含义)中类别出现最多的那个类别,最后我们就将该新的输入实例划分为此类别
import numpy as np
# bmp 图片后缀
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier img_path = './data/3/3_100.bmp'
arr_img = plt.imread(img_path)
arr_img.shape #维度 #特征必须是二维
feature = [] #特征
target = [] #目标数据
for i in range(10):
for j in range(1,501):
#img_path = './data/'+str(i)+'/'+str(i)+'_'+str(j)+'.bmp'
#将图片数据读取到了numpy
img_arr = plt.imread('./data/%d/%d_%d.bmp'%(i,i,j)) #格式化替换
feature.append(img_arr)
target.append(i)
#将列表转numpy
feature = np.array(feature)
feature.shape #发现feature是三维,必须变形成二维的才可以作为特征数据
#获取了符合要求的特征数据(二维)
feature = feature.reshape((5000,784))
target = target
#将样本集拆分成训练数据和测试数据
np.random.seed(6)
np.random.shuffle(feature)
np.random.seed(6)
np.random.shuffle(target)
#训练数据
x_train = feature[0:4950]
y_train = target[0:4950]
#测试数据
x_test = feature[4950:]
y_test = target[4950:] x_train.shape #训练形状
knn = KNeighborsClassifier(n_neighbors=15)
knn.fit(x_train,y_train) #试数据
knn.score(x_test,y_test) #评分
print('模型分类结果:',knn.predict(x_test))
print('真实分类:',y_test)

#下面测试一张新的照片

#获取外部的一张数字图片,让模型进行分类
digist_img_arr = plt.imread('./数字.jpg')
digist_img_arr.shape
plt.imshow(digist_img_arr)
five_img_arr = digist_img_arr[95:150,90:125] #图片切割 行/列
plt.imshow(five_img_arr)
#检查切分出图片(即将被模型进行分类的图片)的形状
five_img_arr.shape #(55, 35, 3) #将图片的第三个维度删除(降维)
five_img_arr = five_img_arr.mean(axis=2) #任意的聚合方法都能降维 0-x 1-y 2-z
five_img_arr.shape
#对不满足像素要求的图片进行等比例压缩
import scipy.ndimage as ndimage
five_img_arr = ndimage.zoom(five_img_arr,zoom=(28/55,28/35)) #图片压缩
five_img_arr.shape #(28, 28)
five_img_arr = five_img_arr.reshape((1,784)) #1行784列
five_img_arr.shape #(1,784)
knn.predict(five_img_arr)[0] #X 未知分类的数据

#模型保存和运用

#保存模型
from sklearn.externals import joblib
joblib.dump(knn,'./knn.m') #写入模型 value, filename, compress=0, protocol=None, cache_size=None
kknn = joblib.load('./knn.m') #读取模型 kknn对象
print(kknn)
#KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
#metric_params=None, n_jobs=1, n_neighbors=15, p=2,
#weights='uniform')
kknn.predict(five_img_arr)[0] #测试模型 结果5

knn 数字识别的更多相关文章

  1. OpenCV 玩九宫格数独(二):knn 数字识别

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者:刘潇龙 前言 首先需要说明,这里所说的数字识别不是手写数字识别! 但凡对机器学习有所了解的人,相信看到数 ...

  2. Python 手写数字识别-knn算法应用

    在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点 ...

  3. 机器学习(二)-kNN手写数字识别

    一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大 ...

  4. KNN实现手写数字识别

    KNN实现手写数字识别 博客上显示这个没有Jupyter的好看,想看Jupyter Notebook的请戳KNN实现手写数字识别.ipynb 1 - 导入模块 import numpy as np i ...

  5. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  6. kaggle 实战 (1): PCA + KNN 手写数字识别

    文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本 ...

  7. Kaggle竞赛丨入门手写数字识别之KNN、CNN、降维

    引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从 ...

  8. 基于OpenCV的KNN算法实现手写数字识别

    基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...

  9. 后端程序员之路 13、使用KNN进行数字识别

    尝试一些用KNN来做数字识别,测试数据来自:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burgesh ...

随机推荐

  1. Echart的使用legend遇到的问题小记

    Echart的图标真的很漂亮,使用也相对简单.但是官网的配置项的例子我不是很能快速的使用,得思考一会.哈哈,可能我比较笨吧. 在作柱状图的时候,我是通过Ajax动态获取的数据,但是图例legend就是 ...

  2. android 代码实现模拟用户点击、滑动等操作

    /** * 模拟用户点击 * * @param view 要触发操作的view * @param x 相对于要操作view的左上角x轴偏移量 * @param y 相对于要操作view的左上角y轴偏移 ...

  3. 杭电oj_1713——相遇周期(java实现)

    question:相遇周期 思路: 首先将两个分数化为最简形式(也就是分子分母同时除以最大公约数) 然后题意是要求两个分数的最小公倍数 借助以下两个公式,就可以求出结果 1.最小公倍数*最大公约数 = ...

  4. Mike and strings

    Mike has n strings s1, s2, ..., sn each consisting of lowercase English letters. In one move he can ...

  5. linux 命令 mkdir

    mkdir -p 如果要创建目录A并创建目录A的子目录B,没有用-p的情况下mkdir 逐个的创建目录(mkdir A,mkdir A/B); 如果用-p 可以直接创建2个目录 mkdir -p A/ ...

  6. (转)HDFS简介

    转自:http://os.51cto.com/art/201212/369564.html

  7. 【转载】extern "C" __declspec(dllexport) __declspec(dllimport) 和 def

    转自:http://www.cppblog.com/FateNo13/archive/2009/08/03/92052.html 前面的extern "C"  __declspec ...

  8. AndroidBDMap学习01:基于百度地图SDK的配置以及利用API实现一个简单的地图应用

    (一)注册并获取AK码: step1:找到keytool工具,并转移到.android目录下.(前提是已经安装了java jre/jdk)  为避免有些情况,在控制台无法找到keytool,可以把与k ...

  9. electron聊天室|vue+electron-vue仿微信客户端|electron桌面聊天

    一.项目概况 基于Electron+vue+electron-vue+vuex+Nodejs+vueVideoPlayer+electron-builder等技术仿制微信电脑端界面聊天室实例,实现消息 ...

  10. spring bean 的作用域

    spring bean 的作用域: 1.单例(singleton):默认是单例模式,也就是说不管给定的bean被注入到其他bean多少次,注入的都是同一个实例. 2.原型(prototype):每次注 ...