【刷题】洛谷 P3901 数列找不同
题目描述
现有数列 \(A_1,A_2,\cdots,A_N\) ,Q 个询问 \((L_i,R_i)\) , \(A_{Li} ,A_{Li+1},\cdots,A_{Ri}\) 是否互不相同
输入输出格式
输入格式:
第1 行,2 个整数 \(N,Q\)
第2 行,N 个整数 \(A_{Li} ,A_{Li+1},\cdots,A_{Ri}\)
Q 行,每行2 个整数 \(L_i,R_i\)
输出格式:
对每个询问输出一行,“Yes” 或者“No”
输入输出样例
输入样例#1:
4 2
1 2 3 2
1 3
2 4
输出样例#1:
Yes
No
说明
• 对于50% 的数据,\(N,Q \le 10^3\)
• 对于100% 的数据, \(1 \le N,Q \le 10^5, 1 \le A_i \le N, 1 \le L_i \le R_i \le N\)
题解
当做莫队裸题做了,加数和删数的时候只要判之前或之后是不是一来更改某一段的贡献
(这题还可以 \(O(n)\) 做,而且很好写,不过为了写个模板,就没去写了)
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100000+10;
int n,q,A[MAXN],unit,Be[MAXN],cnt[MAXN],sum,ans[MAXN];
struct node{
int l,r,id;
inline bool operator < (const node &A) const {
return Be[l]==Be[A.l]?r<A.r:l<A.l;
};
};
node query[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void add(int x)
{
if((cnt[x]++)==1)sum++;
}
inline void del(int x)
{
if((--cnt[x])==1)sum--;
}
int main()
{
read(n);read(q);
unit=std::sqrt(n);
for(register int i=1;i<=n;++i)read(A[i]),Be[i]=i/unit+1;
for(register int i=1;i<=q;++i)
{
read(query[i].l),read(query[i].r);
query[i].id=i;
}
std::sort(query+1,query+q+1);
int l=1,r=0;
for(register int i=1;i<=q;++i)
{
while(l<query[i].l)del(A[l++]);
while(l>query[i].l)add(A[--l]);
while(r<query[i].r)add(A[++r]);
while(r>query[i].r)del(A[r--]);
ans[query[i].id]=sum;
}
for(register int i=1;i<=q;++i)puts(ans[i]?"No":"Yes");
return 0;
}
【刷题】洛谷 P3901 数列找不同的更多相关文章
- 洛谷P3901 数列找不同(莫队水题)
重温下手感,判断区间是否全是不同的数字有两种做法,一个长度为len的区间不同的数字,参见HH的项链,一种是区间众数,参见蒲公英,是水题没错了.明天搞数据库,然后继续自己的gre和训练计划 #inclu ...
- 洛谷 P3901 数列找不同(莫队)
题目链接:https://www.luogu.com.cn/problem/P3901 这道题简单莫队模板题,然后$add$和$del$分别处理$vis[]$从$0-->1$和从$1--> ...
- 洛谷P3901 数列找不同 [莫队]
题目传送门 题目描述 现有数列 A_1,A_2,\cdots,A_NA1,A2,⋯,AN ,Q 个询问 (L_i,R_i)(Li,Ri) , A_{Li} ,A_{Li+1},\cdots, ...
- 洛谷P3901 数列找不同(莫队)
传送门 我不管我不管我就是要用莫队 直接用莫队裸上 //minamoto #include<iostream> #include<cstdio> #include<alg ...
- 洛谷——P1062 数列
洛谷——P1062 数列 题目描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是: 1,3,4,9,10,12,1 ...
- Luogu P3901 数列找不同
由于技术原因,题目我贴不上了,大家点下面的链接自己去看吧^_^ P3901 数列找不同 这题第一眼看去,题面真短,有坑(flag) 在往下面看去,woc数据这么大,你要怎样. 现在一起想想想,超级侦探 ...
- 洛谷 P1182 数列分段 Section II
洛谷 P1182 数列分段 Section II 洛谷传送门 题目描述 对于给定的一个长度为N的正整数数列A-iA−i,现要将其分成M(M≤N)M(M≤N)段,并要求每段连续,且每段和的最大值最小. ...
- 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)
洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...
- P3901 数列找不同
P3901 数列找不同 题目描述 现有数列 \(A_1,A_2,\cdots,A_N\) ,Q 个询问 \((L_i,R_i)\) , \(A_{Li} ,A_{Li+1},\cdots,A_{Ri} ...
随机推荐
- springboot与activemq的使用
1.springboot和activemq的使用相对来说比较方便了,我在网上看了很多其他的资料,但是自己写出来总是有点问题所以,这里重点描述一下遇到的一些问题. 2.至于activemq的搭建和spr ...
- Oracle TDE的学习
TDE的开启和关闭 设置wallet目录,在参数文件sqlnet.ora中,按照下面的格式加入信息 # Oracle Advanced Security Transparent Data Encryp ...
- hdu1176免费馅饼(动态规划,数塔)
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- python爬取视频网站m3u8视频,下载.ts后缀文件,合并成整视频
最近发现一些网站,可以解析各大视频网站的vip.仔细想了想,这也算是爬虫呀,爬的是视频数据. 首先选取一个视频网站,我选的是 影视大全 ,然后选择上映不久的电影 “一出好戏” . 分析页面 我用的是c ...
- Qt-QML-QML调用C++类
QML用来做界面,在不考虑数据的请款下,那是溜溜的,但是,程序是没有不和后台数据交互的,但是了,QML在数据处理方面的效率又是不敢恭维的,这里就出现了QML负责前端界面,而后端使用JS或者C++了. ...
- 接口测试工具postman(八)上传文件接口
涉及到选择文件的接口,在[Body]页签下,key选择File选项,会显示“选择文件”按钮,选择本地的文件
- Linux命令应用大词典-第18章 磁盘分区
18.1 fdisk:分区表管理 18.2 parted:分区维护程序 18.3 cfdisk:基于磁盘进行分区操作 18.4 partx:告诉内核关于磁盘上分区的号码 18.5 sfdisk:用于L ...
- SpringCloud IDEA 教学 (四) 断路器(Hystrix)
写在开始 在SpringCloud项目中,服务之间相互调用(RPC Remote Procedure Call —远程过程调用),处于调用链路底层的服务产生不可用情况时,请求会产生堆积使得服务器线程阻 ...
- POJ 3384 Feng Shui(计算几何の半平面交+最远点对)
Description Feng shui is the ancient Chinese practice of placement and arrangement of space to achie ...
- 常用实例:js格式化手机号为3 4 4形式
如何在填写手机号时将格式转换为3 4 4形式: 一:填写手机号时,在keyup事件中判断长度,符合条件时在值后面插入空格 $('#username').on('keyup',function(e){ ...