BZOJ3329:Xorequ——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=3329

原式化为x^2x=3x,而且实际上异或就是不进位的加法。
那么我们又有x+2x=3x,所以在做加法的时候也没有(在二进制中)进位。
由此我们得到:x必须(在二进制下)没有相邻的1。
那么第一问我们可以采用数位dp,相信看这篇博客的你一定会了数位dp,不会的话设f[i][j][0/1]表示第i位放j数,且前i位比n的前i位小于等于/大于。
剩下的就去学数位dp吧。
第二问就相当于问符合条件的长度为n的01串个数,可以打表,也可以感性证明一下发现就是fib的第n+2项。
于是愉快的矩阵乘法。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll p=1e9+;
ll f[][][];
int q[];
ll dp(ll x){
int len=;
while(x)q[++len]=x%,x/=;
if(len==)q[++len]=;
memset(f,,sizeof(f));
for(int i=;i<=;i++){
if(i<=q[])f[][i][]=;
else f[][i][]=;
}
for(int i=;i<=len;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
if(j+k!=){
if(j<q[i])
f[i][j][]+=f[i-][k][]+f[i-][k][];
else if(j==q[i])
f[i][j][]+=f[i-][k][],f[i][j][]+=f[i-][k][];
else f[i][j][]+=f[i-][k][]+f[i-][k][];
}
}
}
}
ll ans=f[len][][];
for(int i=len-;i;i--)ans+=f[i][][]+f[i][][];
return ans;
}
struct node{
ll g[][];
};
void buildI(node &a){
for(int i=;i<;i++){
for(int j=;j<;j++){
a.g[i][j]=(i==j);
}
}
}
void multi(node x,node y,node &z){
memset(z.g,,sizeof(z.g));
for(int i=;i<;i++){
for(int j=;j<;j++){
if(x.g[i][j]){
for(int l=;l<;l++){
z.g[i][l]+=x.g[i][j]%p*y.g[j][l]%p;
z.g[i][l]%=p;
}
}
}
}
return;
}
node a,b;
void qpow(ll k){
buildI(a);
while(k){
if(k&)multi(a,b,a);
multi(b,b,b);
k>>=;
}
return;
}
ll solve(ll n){
b.g[][]=;b.g[][]=;
b.g[][]=;b.g[][]=;
qpow(n+);
return a.g[][]%p;
}
ll t,n;
int main(){
scanf("%lld",&t);
while(t--){
scanf("%lld",&n);
printf("%lld\n%lld\n",dp(n),solve(n));
}
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ3329:Xorequ——题解的更多相关文章
- BZOJ3329 Xorequ(数位dp+矩阵快速幂)
显然当x中没有相邻的1时该式成立,看起来这也是必要的. 于是对于第一问,数位dp即可.第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可. #include<iostream> #i ...
- BZOJ3329 Xorequ(数位DP)
题目大意:x xor 2x=3x(与x xor 3x=2x等价)求满足等式且小于n的x的个数,与满足等式小于2n的数的个数. 因为异或是不进位的二进制加法,那么因为结果正好和加法相同,那么说明x在二进 ...
- BZOJ3329 : Xorequ
第一问: 打表可得规律:当且仅当x&(x<<1)=0时才会是解,于是数位DP f[i][j][k]表示二进制中前i位,上一位是j,前i位是否等于n的方案数 第二问: 打表可得规律: ...
- BZOJ3329: Xorequ(二进制数位dp 矩阵快速幂)
题意 题目链接 Sol 挺套路的一道题 首先把式子移一下项 \(x \oplus 2x = 3x\) 有一件显然的事情:\(a \oplus b \leqslant c\) 又因为\(a \oplus ...
- BZOJ3329 Xorequ[数位DP+递推矩阵快速幂]
数 位 D P 开 long long 首先第一问是转化. 于是就可以二进制下DP了. 第二问是递推,假设最后$n-1$个01位的填法设为$f[i-1]$(方案包括 ...
- [暑假的bzoj刷水记录]
(这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊 堆一起算了 隔一段更新一下. 7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...
- 【bzoj3329】Xorequ 数位dp+矩阵乘法
题目描述 输入 第一行一个正整数,表示数据组数据 ,接下来T行每行一个正整数N 输出 2*T行第2*i-1行表示第i个数据中问题一的解, 第2*i行表示第i个数据中问题二的解, 样例输入 1 1 样例 ...
- 【bzoj3329】Xorequ 矩阵快速幂
Description Input 第一行一个正整数,表示数据组数据 ,接下来T行 每行一个正整数N Output 2T行 第2i-1行表示第i个数据中问题一的解, 第2*i行表示第i个数据中问题二的 ...
- Xorequ(BZOJ3329+数位DP+斐波那契数列)
题目链接 传送门 思路 由\(a\bigoplus b=c\rightarrow a=c\bigoplus b\)得原式可化为\(x\bigoplus 2x=3x\). 又异或是不进位加法,且\(2x ...
随机推荐
- 微信小程序入门学习之事件 事件对象 冒泡非冒泡事件(1)
这关于事件的学习,可以自己复制到微信开发者工具上自己运行试试. 首先这里有两个文件.js 和.wxml 文件 首先给出.js文件下代码 // pages/news/news.js Page({ /** ...
- 【循环控制器】-(针对中间部分要循环的场景,相当于loadrunner的action部分)
一般使用 setup线程组 + teardown组 针对中间要循环的部分 使用循环处理器 单独循环中间的部分,相当于loadrunner的action部分
- 四分树 (Quadtrees UVA - 297)
题目描述: 原题:https://vjudge.net/problem/UVA-297 题目思路: 1.依旧是一波DFS建树 //矩阵实现 2.建树过程用1.0来填充表示像素 #include < ...
- ionic 组件学习
利用css列表多选框: <div class="{{Conceal}}" > <ion-checkbox color="secondary" ...
- BZOJ 3924 ZJOI2015 幻想乡战略游戏 树链剖分
题目链接:https://www.luogu.org/problemnew/show/P3345(bzoj权限题) 题意概述:动态维护树的上所有点到这棵树的带权重心的距离和.N,Q<=10000 ...
- SGU 520 Fire in the Country(博弈+搜索)
Description This summer's heat wave and drought unleashed devastating wildfires all across the Earth ...
- POJ 2069 Super Star(计算几何の最小球包含+模拟退火)
Description During a voyage of the starship Hakodate-maru (see Problem 1406), researchers found stra ...
- js经典试题之闭包
js经典试题之闭包 1:以下代码输出的结果是? function Foo(){ var i=0; return function(){ document.write(i++); } } var f1= ...
- 软件测试基础-Homework1
The error was in my graduate work which was about game development.I broadcast some messages to the ...
- 20145214《Java程序设计》课程总结
20145214<Java程序设计>课程总结 每周读书笔记链接汇总 第一周读书笔记 第二周读书笔记 第三周读书笔记 第四周读书笔记 第五周读书笔记 第六周读书笔记 第七周读书笔记 第八周读 ...