Description

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。

Input

一个整数,为N。

Output

一个整数,为所求的答案。

Sample Input

6

Sample Output

15

HINT

【数据范围】

对于60%的数据,0<N<=2^16。

对于100%的数据,0<N<=2^32。

———————————————————————

这道题如果一个数x gcd(n,x)==y 那么gcd(b/y,x/y)==1

所以我们枚举因数d 求一下1-n/d有多少个数和n/d的gcd为1 这个可以用欧拉函数

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const int M=1e3+;
LL read(){
LL ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
LL n,v,ans;
int p[M],cnt;
LL f(LL x){for(int i=;i<=cnt;i++)if(x%p[i]==) x=x/p[i]*(p[i]-); return x;}
int main(){
n=read(); v=n;
for(LL x=;x*x<=v;x++)if(v%x==){
p[++cnt]=x;
while(v%x==) v/=x;
}
if(v!=) p[++cnt]=v;
for(LL x=;x*x<=n;x++)if(n%x==){
LL y=n/x;
ans=ans+y*f(x);
if(x!=y) ans=ans+x*f(y);
}printf("%lld\n",ans);
return ;
}

bzoj 2705: [SDOI2012]Longge的问题——欧拉定理的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  2. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  3. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  4. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  5. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  6. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

  7. [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]

    [bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...

  8. BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...

  9. [bzoj 2705][SDOI2012]Longge的问题(数学)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道a ...

随机推荐

  1. Android - 时间 日期相关组件

    源码下载地址 : -- CSDN :  http://download.csdn.net/detail/han1202012/6856737 -- GitHub : https://github.co ...

  2. Android开发技巧--Application, ListView排列,格式化浮点数,string.xml占位符,动态引用图片

    一. Application用途 1. Application用途 创建Application时机 : Application在启动的时候会调用Application无参的构造方法创建实例; Appl ...

  3. <Effective C++>读书摘要--Inheritance and Object-Oriented Design<一>

    1.Furthermore, I explain what the different features in C++ really mean — what you are really expres ...

  4. MVC中验证码的实现(经常用,记录备用)

    一.目录 1.多层架构+MVC+EF+AUTOFAC+AUTOMAPPER: 2.MVC中验证码的实现(经常用,记录备用) 3.Ligerui首页的快速搭建 二 正文 Ok,我们的验证码开始,这篇文章 ...

  5. dedecms添加新模型

    dedecms虽然预设了一些常见网页的功能模型,但是如果需要新的功能则需要自己创建,dedecms也提供了创建新模型的功能,如下: 1.打开后台首页=>核心=>内容模型管理 2.添加新模型 ...

  6. android eclipse 添加libs文件夹

    导入一个项目发现没有libs文件夹,后来z自己新建了个lib文件夹,但是总是不行,后来发现错了,应该是libs文件夹.建完了之后,系统会自动在build path中把这个文件夹添加进来的:个人无须操作

  7. 【Python】python动态类型

    在python中,省去了变量声明的过程,在引用变量时,往往一个简单的赋值语句就同时完成了,声明变量类型,变量定义和关联的过程,那么python的变量到底是怎样完成定义的呢? 动态类型 python使用 ...

  8. 调用init方法 两种方式 一个是浏览器方法 一个是 xml中手工配置(load-on-startup)

    调用init方法 两种方式 一个是浏览器方法 一个是 xml中手工配置(load-on-startup)

  9. [洛谷P3332][ZJOI2013]K大数查询

    题目大意:有$n$个位置,$m$个操作.操作有两种: $1\;l\;r\;x:$在区间$[l,r]$每个位置加上一个数$x$ $2\;l\;r\;k:$询问$[l,r]$中第$k$大的数是多少. 题解 ...

  10. BZOJ1016:[JSOI2008]最小生成树计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1016 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不 ...