P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列
题目描述
广义的斐波那契数列是指形如an=pan-1+qan-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。
输入输出格式
输入格式:
输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。
输出格式:
输出包含一行一个整数,即an除以m的余数。
输入输出样例
输入样例#1:
1 1 1 1 10 7
输出样例#1:
6
说明
数列第10项是55,除以7的余数为6。
简单的矩阵加速
推导很好推吧
两项式一般也就\(2*2\)矩阵
自己手玩一下就能推出来
\]
从而可以得到
\]
#include <iostream>
#include <cstdio>
#define int long long
using namespace std;
struct node {
int m[40][40];
}a,b;
int mod;
node mul(node x,node y) {
node c= {};
for(int i=1; i<=2; ++i)
for(int j=1; j<=2; ++j)
for(int k=1; k<=2; ++k)
c.m[i][j]=(c.m[i][j]+(x.m[i][k]*y.m[k][j])%mod)%mod;
return c;
}
node fpow(node ss,int p) {
node ans= {};
ans.m[1][1]=ans.m[2][2]=1;
while(p) {
if(p&1) ans=mul(ans,ss);
ss=mul(ss,ss);
p>>=1;
}
return ans;
}
int p,q,n;
main() {
cin>>b.m[1][1]>>b.m[2][1]>>a.m[1][2]>>a.m[1][1]>>n>>mod;
b.m[1][2]=1;
if(n==1||n==2) {
cout<<a.m[n][1]<<"\n";
return 0;
}
b=fpow(b,n-2);
a=mul(a,b);
cout<<a.m[1][1]<<"\n";
return 0;
}
P1349 广义斐波那契数列(矩阵加速)的更多相关文章
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
- Codevs 1574 广义斐波那契数列(矩阵乘法)
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...
- 洛谷——P1349 广义斐波那契数列
题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...
- P1349 广义斐波那契数列
题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...
- Luogu P1349 广义斐波那契数列
解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...
- [ZJOI2011]细胞——斐波那契数列+矩阵加速+dp
Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的( ...
随机推荐
- java实现从服务端下载文件
这边用一个简单的servlet实现java从服务端下载文件的操作 写一个servlet: <servlet> <servlet-name>DownloadServlet< ...
- Number Sequence--POJ1019
Number Sequence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 35251 Accepted: 10151 ...
- Python开发【笔记】:what?进程queue还能生产出线程!
进程queue底层用线程传输数据 import threading import multiprocessing def main(): queue = multiprocessing.Queue() ...
- vuex使用
1.装包:npm install vuex -S 2.引入:import Vuex from 'vuex' //这些都是写在man.js中 3.加载到Vue中:Vue.use(Vuex) 4 ...
- SeaJS 与 RequireJS 的差异对比
这篇文章主要介绍了SeaJS 与 RequireJS 的差异对比,本文主要对CMD规范和AMD规范的弊端做了对比,并做出了一个总结,需要的朋友可以参考下 “历史不是过去,历史正在上演.随着 W3C 等 ...
- Python爬虫第一个成功版
爬取http://www.mzitu.com/all里面的图片 import urllib.request import re import os url = 'http://www.mzitu.co ...
- LeetCode--Two_Sum
Given an array of integers, return indices of the two numbers such that they add up to a specific ta ...
- android开发中遇到的一些问题
buildToolsVersion 设置buildtool版本 今天遇到一个奇怪问题instant not supported 原来是设置显示offline...这个很无语,adb devices又能 ...
- 论文笔记:语音情感识别(五)语音特征集之eGeMAPS,ComParE,09IS,BoAW
一:LLDs特征和HSFs特征 (1)首先区分一下frame和utterance,frame就是一帧语音.utterance是一段语音,是比帧高一级的语音单位,通常指一句话,一个语音样本.uttera ...
- Python: os.listdir()
os.listdir(): 返回一个列表,此列表包含参数路径下的的文件名或文件夹名.这个列表以字母为顺序. eg: >>>import os >>>dirs=os. ...