CVPR 2018大会将于2018年6月18~22日于美国犹他州的盐湖城(Salt Lake City)举办。

CVPR2018论文集下载:http://openaccess.thecvf.com/menu.py

目前CVPR2018论文还不能打包下载,但可以看到收录论文标题的清单,感兴趣的可以自行google/baidu下载

详细可以点击链接:https://github.com/amusi/daily-paper-computer-vision/blob/master/2018/cvpr2018-paper-list.csv

cvpr2018论文解读集锦

https://zhuanlan.zhihu.com/p/35131736

CVPR 2017 论文解读集锦

http://cvmart.net/community/article/detail/69

ICCV 2017 论文解读集锦

http://cvmart.net/community/article/detail/153

CVPR2018   GAN相关论文汇总

链接:https://zhuanlan.zhihu.com/p/36436452

1. 数目统计:

风格迁移/cycleGAN/domain adaptation 13

去雾/去遮挡/超像素重建/Photo Enhancement 7

GAN优化 6

图像合成 10

人脸相关 7

姿态相关 4

行人重识别 3

其他类 <3

2. 分析:今年GAN的山头还是被domain adaptation和CycleGAN相关研究拿下,除此之外,图像合成和视觉病态问题也是GAN应用热点,人脸,行人识别异军突起,说明落地型工作开始增多。剩下几篇都属于挖坑型工作。

风格迁移/cycleGAN/domain adaptation

1.PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup

Huiwen Chang (); Jingwan Lu (Adobe Research); Fisher Yu (UC Berkeley); Adam Finkelstein (Princeton Univ.)

2.CartoonGAN: Generative Adversarial Networks for Photo Cartoonization

Yang Chen (Tsinghua Univ.); Yu-Kun Lai (Cardiff Univ.); Yong-Jin Liu ()

3.StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi (Korea Univ.); Minje Choi (Korea Univ.); Munyoung Kim (College of New Jersey); Jung-Woo Ha (NAVER); Sunghun Kim (Hong Kong Univ. of Science and Technology); Jaegul Choo (Korea Univ.)

4.Generate to Adapt: Aligning Domains Using Generative Adversarial Networks:

Swami Sankaranarayanan (Univ. of Maryland); Yogesh Balaji (Univ. of Maryland); Carlos D. Castillo (); Rama Chellappa (Univ. of Maryland)

5.Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation

Qingchao Chen (Unviersity College London); Yang Liu (Univ. of Cambridge); Zhaowen Wang (Adobe); Ian Wassell (); Kevin Chetty ()

6.Multi-Content GAN for Few-Shot Font Style Transfer

Samaneh Azadi (UC Berkeley); Matthew Fisher (Adobe); Vladimir G. Kim (Adobe Research); Zhaowen Wang (Adobe); Eli Shechtman (Adobe Research); Trevor Darrell (UC Berkeley)

7.DA-GAN: Instance-Level Image Translation by Deep Attention Generative Adversarial Networks

Shuang Ma (SUNY Buffalo); Jianlong Fu (); Chang Wen Chen (); Tao Mei ()

8.Adversarial Feature Augmentation for Unsupervised Domain Adaptation

Riccardo Volpi (Istituto Italiano di Tecnologia); Pietro Morerio (Istituto Italiano di Tecnologia); Silvio Savarese (); Vittorio Murino (Istituto Italiano di Tecnologia)

9.Domain Generalization With Adversarial Feature Learning

Haoliang Li (Nanyang Technological Univ.); Sinno Jialin Pan (Nanyang Technological Univ.); Shiqi Wang (City Univ. of Hong Kong); Alex C. Kot ()

10Image to Image Translation for Domain Adaptation

Zak Murez (UC San Diego); Soheil Kolouri (HRL Laboratories); David Kriegman (UC San Diego); Ravi Ramamoorthi (UC San Diego); Kyungnam Kim (HRL Laboratories)

11.Partial Transfer Learning With Selective Adversarial Networks

Zhangjie Cao (Tsinghua Univ.); Mingsheng Long (Tsinghua Univ.); Jianmin Wang (); Michael I. Jordan (UC Berkeley)

12.Duplex Generative Adversarial Network for Unsupervised Domain Adaptation

Lanqing Hu (ICT, CAS); Meina Kan (); Shiguang Shan (Chinese Academy of Sciences); Xilin Chen ()

13.Conditional Generative Adversarial Network for Structured Domain Adaptation

去雾/去遮挡/超像素重建/Photo Enhancement :

1.Single Image Dehazing via Conditional
Generative Adversarial Network:

Runde Li (Nanjing Univ. of Science and
Technology ); Jinshan Pan (UC Merced); Zechao Li (Nanjing Univ. of Science and
Technology ); Jinhui Tang ()

2.DeblurGAN: Blind Motion Deblurring
Using Conditional Adversarial Networks:

Orest Kupyn (Ukrainian Catholic Univ.);
Volodymyr Budzan (Ukrainian Catholic Univ.); Mykola Mykhailych (Ukrainian
Catholic Univ.); Dmytro Mishkin (Czech Technical Univ.); Jiří Matas ()

3.Deep Photo Enhancer: Unpaired Learning
for Image Enhancement From Photographs With GANs:

Yu-Sheng Chen (National Taiwan Univ.);
Yu-Ching Wang (National Taiwan Univ.); Man-Hsin Kao (National Taiwan Univ.);
Yung-Yu Chuang (National Taiwan Univ.)

4.SeGAN: Segmenting and Generating the
Invisible:

Kiana Ehsani (Univ. of Washington); Roozbeh
Mottaghi (Allen Institute for AI); Ali Farhadi (Allen Institute for AI, Univ.
of Washington)

5.Image Blind Denoising With Generative
Adversarial Network Based Noise Modeling:

Jingwen Chen (Sun Yat-sen Univ.); Jiawei
Chen (Sun Yat-sen Univ.); Hongyang Chao (Sun Yat-sen Univ.); Ming Yang ()

6.Attentive Generative Adversarial
Network for Raindrop Removal From a Single Image:

Rui Qian (Peking Univ.); Robby T. Tan
(Yale-NUS College; National Univ. of Singapore); Wenhan Yang (Peking Univ.);
Jiajun Su (Peking Univ.); Jiaying Liu (Peking Univ.)

7.Stacked Conditional Generative
Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal:

Jifeng Wang (Nanjing Univ. of Science and
Technology); Xiang Li (Nanjing Univ. of Science and Technology); Jian Yang
(Nanjing Univ. of Science and Technology)

GAN优化:

1.SGAN: An Alternative Training of
Generative Adversarial Networks:

Tatjana Chavdarova (Idiap and EPFL);
François Fleuret (Idiap Research Inst.)

2.Multi-Agent Diverse Generative
Adversarial Networks:

Arnab Ghosh (Univ. of Oxford); Viveka
Kulharia (Univ. of Oxford); Vinay P. Namboodiri (Indian Inst. of Technology
Kanpur); Philip H.S. Torr (Oxford); Puneet K. Dokania (Univ. of Oxford)

3.Generative Adversarial Image Synthesis
With Decision Tree Latent Controller:

Takuhiro Kaneko (NTT); Kaoru Hiramatsu
(NTT); Kunio Kashino (NTT)

4.Unsupervised Deep Generative
Adversarial Hashing Network:

Kamran Ghasedi Dizaji (Univ. of
Pittsburgh); Feng Zheng (Univ. of Pittsburgh); Najmeh Sadoughi (UT Dallas);
Yanhua Yang (Xidian Univ.); Cheng Deng (Xidian Univ.); Heng Huang (Univ. of
Pittsburgh)

5.Global Versus Localized Generative
Adversarial Nets:

Guo-Jun Qi (Univ. of Central Florida);
Liheng Zhang (Univ. of Central Florida); Hao Hu (Univ. of Central Florida);
Marzieh Edraki (Univ. of Central Florida ); Jingdong Wang (Microsoft Research);
Xian-Sheng Hua (Microsoft Research)

6.GAGAN: Geometry-Aware Generative
Adversarial Networks:

Jean Kossaifi (Imperial College London);
Linh Tran (Imperial College London); Yannis Panagakis (); Maja Pantic (Imperial
College London)

图像合成:

1.ST-GAN: Spatial Transformer Generative
Adversarial Networks for Image Compositing:

Chen-Hsuan Lin (Carnegie Mellon Univ.);
Ersin Yumer (Argo AI); Oliver Wang (Adobe); Eli Shechtman (Adobe Research);
Simon Lucey ()

2.SketchyGAN: Towards Diverse and
Realistic Sketch to Image Synthesis:

Wengling Chen (Georgia Inst. of
Technology); James Hays (Georgia Tech)

3.Translating and Segmenting Multimodal
Medical Volumes With Cycle- and Shape-Consistency Generative Adversarial
Network:

Zizhao Zhang (Univ. of Florida); Lin Yang
(); Yefeng Zheng (Simens )

4.High-Resolution Image Synthesis and
Semantic Manipulation With Conditional GANs:

Ting-Chun Wang (NVIDIA); Ming-Yu Liu
(NVIDIA); Jun-Yan Zhu (UC Berkeley); Andrew Tao (NVIDIA); Jan Kautz (NVIDIA);
Bryan Catanzaro (NVIDIA)

5.TextureGAN: Controlling Deep Image
Synthesis With Texture Patches:

Wenqi Xian (); Patsorn Sangkloy (Georgia
Inst. of Technology); Varun Agrawal (); Amit Raj (Georgia Inst. of Technology);
Jingwan Lu (Adobe Research); Chen Fang (Adobe Research); Fisher Yu (UC
Berkeley); James Hays (Georgia Tech)

6.Eye In-Painting With Exemplar
Generative Adversarial Networks:

Brian Dolhansky (Facebook); Cristian Canton
Ferrer (Facebook)

7.Photographic Text-to-Image Synthesis
With a Hierarchically-Nested Adversarial Network:

Zizhao Zhang (Univ. of Florida); Yuanpu Xie
(Univ. of Florida); Lin Yang ()

8.Logo Synthesis and Manipulation With
Clustered Generative Adversarial Networks:

Alexander Sage (ETH Zürich); Eirikur Agustsson (ETH Zürich); Radu
Timofte (ETH Zürich); Luc Van Gool (ETH Zürich)

9.Cross-View Image Synthesis Using
Conditional GANs:

Krishna Regmi (Univ. of Central Florida);
Ali Borji (Univ. of Central Florida)

10.AttnGAN: Fine-Grained Text to Image
Generation With Attentional Generative Adversarial Networks:

Tao Xu (Lehigh Univ.); Pengchuan Zhang ();
Qiuyuan Huang (); Han Zhang (Rutgers); Zhe Gan (); Xiaolei Huang (Lehigh );
Xiaodong He ()

人脸相关:

1.Finding Tiny Faces in the Wild With
Generative Adversarial Network:

Yancheng Bai (KAUST/Iscas); Yongqiang Zhang
(Harbin Inst. of Technology/KAUST); Mingli Ding (); Bernard Ghanem ()

2.Learning Face Age Progression: A
Pyramid Architecture of GANs:

Hongyu Yang (Beihang Univ.); Di Huang ();
Yunhong Wang (); Anil K. Jain (MSU)

3.Super-FAN: Integrated Facial Landmark
Localization and Super-Resolution

of Real-World Low Resolution Faces in
Arbitrary Poses With GANs:

Adrian Bulat (); Georgios Tzimiropoulos ()

4.Face Aging With Identity-Preserved
Conditional Generative Adversarial Networks:

Zongwei Wang (); Xu Tang (Baidu); Weixin
Luo (ShanghaiTech Univ.); Shenghua Gao (ShanghaiTech Univ.)

5.Towards Open-Set Identity Preserving
Face Synthesis:

Jianmin Bao (Univ. of Science and
Technology of China); Dong Chen (Microsoft Research Asia); Fang Wen ();
Houqiang Li (); Gang Hua

(Microsoft Research)

6.Weakly Supervised Facial Action Unit
Recognition Through Adversarial Training:

Guozhu Peng (Univ. of Science and
Technology of China); Shangfei Wang ()

7.FaceID-GAN: Learning a Symmetry
Three-Player GAN for Identity-Preserving Face Synthesis:

Yujun Shen (Chinese Univ. of Hong Kong);
Ping Luo (Chinese Univ. of Hong Kong); Junjie Yan (); Xiaogang Wang (Chinese
Univ. of Hong Kong); Xiaoou Tang (Chinese Univ. of Hong Kong)

人体姿态相关:

1.GANerated Hands for Real-Time 3D Hand
Tracking From Monocular RGB:

Franziska Mueller (MPI Informatics);
Florian Bernard (MPI Informatics); Oleksandr Sotnychenko (MPI Informatics);
Dushyant Mehta (MPI Informatics); Srinath Sridhar (); Dan Casas (MPI Informatics);
Christian Theobalt (MPI Informatics)

2.Multistage Adversarial Losses for
Pose-Based Human Image Synthesis:

Chenyang Si (Inst. of Automation, Chinese
Academy of Sciences); Wei Wang (); Liang Wang (); Tieniu Tan (NLPR)

3.Deformable GANs for Pose-Based Human
Image Generation:

Aliaksandr Siarohin (DISI, Univ. of
Trento); Enver Sangineto (Univ. of Trento); Stéphane
Lathuilière (INRIA); Nicu Sebe (Univ. of Trento)

4.Social GAN: Socially Acceptable
Trajectories With Generative Adversarial Networks:

Agrim Gupta (Stanford Univ.); Justin
Johnson (Stanford Univ.); Li Fei-Fei (Stanford Univ.); Silvio Savarese ();
Alexandre Alahi (EPFL)

行人重识别:

1.Person Transfer GAN to Bridge Domain
Gap for Person Re-Identification:

Longhui Wei (Peking Univ.); Shiliang Zhang
(Peking Univ.); Wen Gao (); Qi Tian ()

2.Disentangled Person Image Generation:

Liqian Ma (KU Leuven); Qianru Sun (MPI
Informatics); Stamatios Georgoulis (KU Leuven); Luc Van Gool (KU Leuven); Bernt
Schiele (MPI Informatics); Mario Fritz (MPI Informatics)

3.Image-Image Domain Adaptation With
Preserved Self-Similarity and Domain-Dissimilarity for Person Re-Identification:

Weijian Deng (Univ. of Chinese Academy);
Liang Zheng (UT San Antonio); Qixiang Ye (); Guoliang Kang (Univ. of Technology
Sydney); Yi Yang (); Jianbin Jiao ()

目标跟踪:

1.VITAL: VIsual Tracking via Adversarial
Learning:

Yibing Song (Tencent AI Lab); Chao Ma ();
Xiaohe Wu (Harbin Inst. of Technology); Lijun Gong (City Univ. of Hong Kong);
Linchao Bao (Tencent AI Lab); Wangmeng Zuo (Harbin Inst. of Technology);
Chunhua Shen (Univ. of Adelaide); Rynson W.H. Lau (City Univ. of Hong Kong);
Ming-Hsuan Yang (UC Merced)

2.SINT++: Robust Visual Tracking via
Adversarial Positive Instance Generation:

Xiao Wang (Anhui Univ.); Chenglong Li
(Anhui Univ.); Bin Luo (); Jin Tang ()

目标检测:

1.Generative Adversarial Learning
Towards Fast Weakly Supervised Detection:

Yunhan Shen (Xiamen Univ.); Rongrong Ji ();
Shengchuan Zhang (); Wangmeng Zuo (Harbin Inst. of Technology); Yan Wang
(Microsoft)

特征可解释性:

1.Visual Feature Attribution Using
Wasserstein GANs:

Christian F. Baumgartner (ETH Zürich); Lisa M. Koch (ETH Zürich); Kerem Can
Tezcan (ETH Zürich); Jia Xi Ang (ETH Zürich); Ender Konukoglu (ETH Zürich)

图像检索:

1.HashGAN: Deep Learning to Hash With
Pair Conditional Wasserstein GAN:

Yue Cao (Tsinghua Univ.); Bin Liu (Tsinghua
Univ.); Mingsheng Long (Tsinghua Univ.); Jianmin Wang ()

视频合成:

1.Learning to Generate Time-Lapse Videos
Using Multi-Stage Dynamic Generative Adversarial Networks:

Wei Xiong (Univ. of Rochester); Wenhan Luo
(Tencent AI Lab); Lin Ma (Tencent AI Lab); Wei Liu (); Jiebo Luo (Univ. of
Rochester)

2.MoCoGAN: Decomposing Motion and
Content for Video Generation:

Sergey Tulyakov (); Ming-Yu Liu (NVIDIA);
Xiaodong Yang (NVIDIA); Jan Kautz (NVIDIA)


CVPR2018资源汇总的更多相关文章

  1. Kinect开发资源汇总

    Kinect开发资源汇总   转自: http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=254&highlight=kinec ...

  2. 微信小程序(应用号)资源汇总整理

    微信小应用资源汇总整理 开源项目 WeApp - 微信小程序版的微信 wechat-weapp-redux-todos - 微信小程序集成Redux实现的Todo list wechat-weapp- ...

  3. 【特别推荐】Node.js 入门教程和学习资源汇总

    这篇文章与大家分享一批很有用的 Node.js 入门教程和学习资源.Node 是一个服务器端的 JavaScript 解释器,它将改变服务器应该如何工作的概念.它的目标是帮助程序员构建高度可伸缩的应用 ...

  4. Github上PHP资源汇总大全,php学习的好资料

    Github上PHP资源汇总大全,php学习的好资料 国外程序员ziadoz 在Github上收集整理了PHP的各种资源,内容包括模板.框架.数据库.安全等方面的库和工具.汇总了各种PHP资源,供各位 ...

  5. 知名杀毒软件Mcafee(麦咖啡)个人版 资源汇总兼科普(来自卡饭)

    虽然早已不是用咖啡了,但我也实时关注的咖啡的一举一动,潜水看帖日久,发现小白众多,好多有价值的帖子淹没于帖海当中,甚是惋惜.     我有如下建议      1.咖啡区管理层,能否吧一些优秀的资源教程 ...

  6. GitHub最全的前端资源汇总仓库(包括前端学习、开发资源、求职面试等)

    在GitHub上收集的最全的前端资源汇总(包括前端学习.前端开发资源.前端求职面试等) 个人结合github上各位大神分享的资源进行了简单的汇总整理,每一个条目下面都有丰富的资料,是前端学习.工作的好 ...

  7. 数据可视化的优秀入门书籍有哪些,D3.js 学习资源汇总

    习·D3.js 学习资源汇总 除了D3.js自身以外,许多可视化工具包都是基于D3开发的,所以对D3的学习就显得很重要了,当然如果已经有了Javascript的经验,学起来也会不费力些. Github ...

  8. KbmMW资源汇总(更新中…)

    KbmMW框架是收费的,不在此提供下载,如需购买,请自行联系作者Kim Madsen. 网址资源: 官网主页:http://www.components4programmers.com/product ...

  9. ENode简介与各种资源汇总

    ENode简介与各种资源汇总 ENode是什么 ENode是一个.NET平台开源的应用开发框架,为开发人员提供了一套完整的基于DDD+CQRS+ES+(in-memory)+EDA架构风格的解决方案. ...

随机推荐

  1. 多线程二(GCD)代码笔记

    // // TWFXViewController.h // Demo_GCD // // Created by Lion User on 12-12-11. // Copyright (c) 2012 ...

  2. Matlab 随机数字

    1.随机生成仅仅有0.1元素的矩阵(m行n列) A=round(rand(m,n)) 2.随机生成每行有若干个0,1元素的矩阵,比方每行仅仅有2个元素为1,其它元素为0 A=zeros(4,5) fo ...

  3. Java实现策略模式的简单应用

    在使用图像处理软件处理图片后,需要选择一种格式进行保存.然而各种格式在底层实现的算法并不相同,这刚好适合策略模式.编写程序,演示如何使用策略模式与简单工厂模式组合进行开发. 思路如下: 使用inter ...

  4. 7 -- Spring的基本用法 -- 7... 创建Bean的3种方式

    7.7 创建Bean的3种方式 ① 调用构造器创建Bean. ② 调用静态工厂方法创建Bean. ③ 调用实例工厂方法创建Bean. 7.7.1 使用构造器创建Bean实例. 使用构造器来创建Bean ...

  5. php 自定义 分页函数

    <?php /** * 分页函数 * @param type $num 数据总数 * @param type $perpage 每页总数 * @param type $curpage 当前分页 ...

  6. Git Step by Step – (2) 本地Repo

    前面一篇文章简单介绍了Git,并前在Windows平台上搭建了Git环境,现在就正式的Git使用了. Git基本概念 在开始Git的使用之前,需要先介绍一些概念,通过这些概念对Git有些基本的认识,这 ...

  7. 【代码审计】QYKCMS_v4.3.2 任意文件上传漏洞分析

      0x00 环境准备 QYKCMS官网:http://www.qykcms.com/ 网站源码版本:QYKCMS_v4.3.2(企业站主题) 程序源码下载:http://bbs.qingyunke. ...

  8. FTP匿名访问修复方法

    window2003 window2008

  9. SaltStack salt-ssh 用法

    以下在 master 操作: (1) 我们在安装部署 SaltStack 的时候,需要安装 salt 客户端,还要与 salt 服务端进行认证才能互相通信(2) 如果我们使用 salt-ssh 的方式 ...

  10. 音频——H5 audio

    分享站又有新功能了:将文件站上的语音文件正确播放出来.效果图: 暂停: 播放: 实现的效果:类似于音乐播放器一般,但是较之更简单一些,可以正常播放语音,有拖动.快进后退效果便可. 思路: 首先想到的便 ...