OpenGL中投影矩阵的推导
本文主要是对红宝书(第八版)第五章中给出的透视投影矩阵和正交投影矩阵做一个简单推导。投影矩阵的目的是:原始点P(x,y,z)对应后投影点P'(x',y',z')满足x',y',z'∈[-1,1]。
一、透视投影
下图为透视投影的视锥体:

注:上图中忘了标注了,远裁剪平面距离原点距离为f,近裁剪平面距离原点距离为n。
设P(x0, y0, z0),我们分别求各个坐标在投影后的值。将P点投影到近平面上,首先看x方向上的投影,沿着过P点,且平行于xoz平面切一刀,有如下图:

假设投影后的x坐标为:x_n(在近裁剪平面的投影),由相似三角形的性质,有

,可以得到:

同理,有

这样其实实现了透视投影,近大远小的效果,因为z0越大,则x1,y1就越小。为了将这两个值转换到[-1,1]区间内,设l和r分别为近裁剪平面左、右边框的x坐标,即l=-w/2,r=w/2(如图所示,w为上下边框的长度),为了使任何投影到近裁剪平面的点都在区间内,转换后,[l',r']∈[0,1],其中l',r'分别为l和r转换后的值。因为是线性转换,可领x'=kx+b,则下式成立:

求得,

再根据之前的结果,可以得到归一化后的x坐标为:

同理,设t和p分别为近裁剪平面上下边框的y坐标,则:

投影后的坐标都有一个共同因子——[-1/z0],正好对应变换后w=-z0。
接下来,我们看z要满足什么要求。为简化讨论,根据以上结论,我们假设透视变换有下述形式:

于是:

最后的变换矩阵如下:

OpenGL中投影矩阵的推导的更多相关文章
- OpenGL中投影矩阵基础知识
投影矩阵元素Projection Matrix 投影矩阵构建: 当f趋向于正无穷时: 一个重要的事实是,当f趋于正无穷时,在剪裁空间中点的z坐标跟w坐标相等.计算方法如下: 经过透视除法后,z坐标变为 ...
- 关于opengl中的矩阵平移,矩阵旋转,推导过程理解 OpenGL计算机图形学的一些必要矩阵运算知识
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12166896.html 为什么引入齐次坐标的变换矩阵可以表示平移呢? - Yu Mao的回答 ...
- (转)投影矩阵的推导(Deriving Projection Matrices)
转自:http://blog.csdn.net/gggg_ggg/article/details/45969499 本文乃<投影矩阵的推导>译文,原文地址为: http://www.cod ...
- OpenGL中的矩阵相乘
OpenGL中的矩阵相乘 1, 在OpenGL中所有的视图变换,模型变换 都是4×4矩阵,每个后续的glMultiMatrix*(N),或者变换函数,glTranslate* (),glRotate* ...
- [OpenGL](翻译+补充)投影矩阵的推导
1.简介 基本是翻译和补充 http://www.songho.ca/opengl/gl_projectionmatrix.html 计算机显示器是一个2D的平面,一个3D的场景要被OpenGL渲染必 ...
- OpenGL中摄像机矩阵的计算原理
熟悉OpenGL|ES的朋友,可能会经常设置摄像机的view矩阵,iOS中相对较好,已经封装了方向,只需要设置摄像机位置,目标点位置以及UP向量即可.下面先介绍下摄像机view矩阵的计算原理.此处假设 ...
- 【脚下生根】之深度探索安卓OpenGL投影矩阵
世界变化真快,前段时间windows开发技术热还在如火如荼,web技术就开始来势汹汹,正当web呈现欣欣向荣之际,安卓小机器人,咬过一口的苹果,winPhone开发平台又如闪电般划破了混沌的web世界 ...
- Android OpenGL ES(六)----进入三维在代码中创建投影矩阵和旋转矩阵
我们如今准备好在代码中加入透视投影了. Android的Matrix类为它准备了两个方法------frustumM()和perspectiveM(). 不幸的是.frustumM()的个缺陷,它会影 ...
- OpenGL中两种计算投影矩阵的函数
OpenGL无意间同时看到两种创建投影矩阵的写法,可以说它们完成的是同样的功能,但写法完全不同,可以观摩一下什么叫做异曲同工之妙... 第一种: gltMakeShadowMatrix函数是重点 // ...
随机推荐
- opencv学习笔记(02)——遍历图像(指针法)
#include <opencv2\core\core.hpp> #include <opencv2\highgui\highgui.hpp> #include <ope ...
- docker下PHP+Nginx+HHVM运行环境
Dockerfile 准备开始,我们创建一个 Dockerfile —— Dockerfile 包含如何创建所需镜像的指令. FROM centos:centos6MAINTAINER Mike ...
- oracle 行转列 分析函数
oracle 行转列 首先看一下源数据: 方法一:WM_CONCAT group by 这个方法没有问题. SELECT CODE_TS, WMSYS.WM_CONCAT(S_NUM + || ':' ...
- go语言使用protobuf
网上为什么充斥着大量几乎一模一样而且不正确的教程??? 妈的打开一个关于golang和protobuf的教程,无非都是protobuf多么多么牛逼,xml多么多么傻逼,然后就是怎么安装protobuf ...
- 回顾Ado.Net
using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Da ...
- DB天气app冲刺第十一天
今天是第十一天了.今天遇到了一个很麻烦的问题 就是程序好好的然后调试运行之后能够安装成功 但总是运行不了 一直闪退.最主要的问题是代码还没有问题,这是最让人揪心的一个问题了.因为有bug的话还可以改, ...
- where, group by, having
where vs having 当一个sql语句中存在where子句,会先执行where,然后执行group by,然后执行having. 一般来说,only use 'having' when yo ...
- hdu 1233
最小生成树 本来挺简单 一个小错wa了好几遍 /************************************************************************* & ...
- hdu 3032 Nim or not Nim? 博弈论
这题是Lasker’s Nim. Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and g( ...
- 【BZOJ 2829】 2829: 信用卡凸包 (凸包)
2829: 信用卡凸包 Description Input Output Sample Input 2 6.0 2.0 0.0 0.0 0.0 0.0 2.0 -2.0 1.5707963268 Sa ...