Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4

【样例输入2】
3 4

Sample Output

【样例输出1】
36

【样例输出2】
20

【数据规模和约定】
对于10%的数据:1 ≤ n, m ≤ 10;

对于50%的数据:1 ≤ n, m ≤ 100;

对于80%的数据:1 ≤ n, m ≤ 1000;

对于90%的数据:1 ≤ n, m ≤ 10,000;

对于100%的数据:1 ≤ n, m ≤ 100,000。

 
设立状态f[i]表示因数个数为i的数的个数,倒序求解,注意去重
//表示刚开始想用欧拉筛&&素数筛去做,后来看到10000*10000就果断放弃了
 #include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
long long n,m,ans;
long long f[];
int main(){
cin>>n>>m;
if (m<n) swap(m,n);
for (int i=n;i;i--){
f[i]=(n/i)*(m/i);
for (int j=i*;j<=n;j=j+i){
f[i]-=f[j];
}
}
for (int i=;i<=m;i++) ans+=f[i]*(*(i-)+);
cout<<ans<<endl;
}

【BZOJ 2005】[Noi2010]能量采集的更多相关文章

  1. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  2. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  3. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  4. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

  5. 【刷题】BZOJ 2005 [Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  6. BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意:   思路: 首先要知道一点是,某个坐标(x,y)与(0,0)之间的整数点的个数为gcd ...

  7. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

  8. BZOJ 2005 [Noi2010]能量采集 ——Dirichlet积

    [题目分析] 卷积一卷. 然后分块去一段一段的求. O(n)即可. [代码] #include <cstdio> #include <cstring> #include < ...

  9. bzoj 2005: [Noi2010]能量采集【莫比乌斯反演】

    注意到k=gcd(x,y)-1,所以答案是 \[ 2*(\sum_{i=1}^{n}\sum_{i=1}^{m}gcd(i,j))-n*m \] 去掉前面的乘和后面的减,用莫比乌斯反演来推,设n< ...

  10. BZOJ 2005: [Noi2010]能量采集(容斥+数论)

    传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\s ...

随机推荐

  1. Adobe Edge Animate –解决图形边缘精确检测问题-通过jquery加载svg图片

    Adobe Edge Animate –解决图形边缘精确检测问题-通过jquery加载svg图片 版权声明: 本文版权属于 北京联友天下科技发展有限公司. 转载的时候请注明版权和原文地址. 在edge ...

  2. 【策略】UVa 11389 - The Bus Driver Problem

    题意: 有司机,下午路线,晚上路线各n个.给每个司机恰好分配一个下午路线和晚上路线.给出行驶每条路线的时间,如果司机开车时间超过d,则要付加班费d×r.问如何分配路线才能使加班费最少. 虽然代码看起来 ...

  3. Linux下is not in the sudoers file解决方法

    最近在学习linux,在某个用户(xxx)下使用sudo的时候,提示以下错误:xxx is not in the sudoers file. This incident will be reporte ...

  4. fatal error LNK1168: cannot open Debug/opreat.exe for writing

    问题:LINK : fatal error LNK1168: cannot open Debug/opreat.exe for writing           Error executing li ...

  5. Window 中常见的dos命令

    在哪里操作dos命令:    win7---->开始---->所有程序---->附件---->命令提示符                              win7-- ...

  6. MongoDB - Installing MongoDB on Linux

    1. 下载最新稳定版本的安装包. [huey@huey mongodb]$ wget -c --no-check-certificate https://fossies.org/linux/misc/ ...

  7. replace替换语句

    t_sql语句:replace替换语句:update 表名 set 列名=REPLACE(列名,'替换的数据','替换后的数据')

  8. MSSQL Server 导入/导出到远程服务器

    1.打开本地企业管理器,先创建一个SQL Server注册来远程连接服务器端口SQL Server. 步骤如下图: 图1: 2.弹出窗口后输入内容."总是提示输入登陆名和密码"可选 ...

  9. Linux命令(1):cd命令

    1.作用:改变工作目录: 2.格式:cd  [路径]  其中的路径为要改变的工作目录,可为相对路径或绝对路径 3.使用实例:[root@www uclinux]# cd /home/yourname/ ...

  10. Microsoft Dynamics CRM 2011的组织服务中的RetrieveMultiple方法(转)

    本篇文章,介绍Microsoft Dynamics CRM 2011的组织服务中的RetrieveMultiple方法. RetreiveMultiple方法,用于获取实体的多个实例,该方法的签名如下 ...