1025: [SCOI2009]游戏 - BZOJ
Description
windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们对应的数字。如此反复,直到序列再次变为1,2,3,……,N。 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6 3 1 2 4 5 6 1 2 3 5 4 6 2 3 1 4 5 6 3 1 2 5 4 6 1 2 3 4 5 6 这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。
Input
包含一个整数,N。
Output
包含一个整数,可能的排数。
Sample Input
【输入样例一】
3
【输入样例二】
10
Sample Output
【输出样例一】
3
【输出样例二】
16
【数据规模和约定】
30%的数据,满足 1 <= N <= 10 。
100%的数据,满足 1 <= N <= 1000 。
我傻叉了,写完WA了半天,然后反应过来,哦,他是在求最小公倍数啊(没有看清题目就乱搞........最开始还以为是乘积的个数)
先筛素数,然后枚举每个因子选几次方,然后减去这个数的几次方,枚举下一个质数
用记忆化搜索很好写
const
maxn=;
var
n,tot:longint;
flag:array[..maxn]of boolean;
zhi:array[..maxn]of longint;
f:array[..maxn,..maxn]of int64; procedure shai;
var
i,j:longint;
begin
for i:= to n do
begin
if flag[i]=false then
begin
inc(tot);
zhi[tot]:=i;
end;
for j:= to tot do
begin
if zhi[j]*i>n then break;
flag[zhi[j]*i]:=true;
if i mod zhi[j]= then break;
end;
end;
end; function fx(x,a:longint):int64;
var
i,s:longint;
begin
if f[x,a]> then exit(f[x,a]);
fx:=;
if zhi[x]>a then exit();
if x>tot then exit();
s:=;
inc(fx,fx(x+,a));
for i:= to a div zhi[x] do
begin
s:=s*zhi[x];
if s>a then break;
inc(fx,fx(x+,a-s));
end;
f[x,a]:=fx;
end; begin
read(n);
shai;
write(fx(,n));
end.
1025: [SCOI2009]游戏 - BZOJ的更多相关文章
- BZOJ 1025 [SCOI2009]游戏
1025: [SCOI2009]游戏 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1533 Solved: 964[Submit][Status][ ...
- BZOJ 1025: [SCOI2009]游戏( 背包dp )
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...
- AC日记——[SCOI2009]游戏 bzoj 1025
[SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...
- [BZOJ 1025] [SCOI2009] 游戏 【DP】
题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...
- 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...
- bzoj 1025 [SCOI2009]游戏(置换群,DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...
- [bzoj 1025][SCOI2009]游戏(DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...
- BZOJ 1025 SCOI2009 游戏 动态规划
标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...
- BZOJ 1025: [SCOI2009]游戏 [置换群 DP]
传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...
随机推荐
- js中定义对象的方式有哪些?
1.对象直接量 2.构造函数 3.原型方法 4.动态原型方法
- javascript深入理解闭包
一.变量的作用域 要理解闭包,首先必须理解Javascript特殊的变量作用域. 变量的作用域无非就是两种:全局变量和局部变量. Javascript语言的特殊之处,就在于函数内部可以直接读取全局变量 ...
- VSFTPD无法上传的解决方法
搭建好FTP之后就没有去测试了,今天去试了一下上传的时候发生错误了,无法上传,提示“553 Could not create file”错误, 上网找了一些资料,发现很多都说是权限和防火墙的问题,但是 ...
- 分析Android程序之破解第一个程序
破解Android程序通常的方法是将apk文件利用ApkTool反编译,生成Smali格式的反汇编代码,然后阅读Smali文件的代码来理解程序的运行机制,找到程序的突破口进行修改,最后使用ApkToo ...
- EXCEL跨工作薄查找。提取信息
=IF(ISERROR(INDEX(zdy!$B:$B,MATCH(B15,zdy!$B:$B,0))),"不存在",INDEX(zdy!$C:$C,MATCH(B15,zdy!$ ...
- 北大ACM(POJ1001-Exponentiation)
Question:http://poj.org/problem?id=1001问题点:大数运算(求幂) #include <iostream> using namespace std; # ...
- C# Winform AutoScaleMode属性
属性的用法: None : 禁用自动缩放.(默认时) Font :根据类使用的字体(通常为系统字体)的维度控制缩放. Dpi : 根据显示分辨率控制缩放.常用分辨率为 96 和 120 DPI. In ...
- C#程序员整理的Unity 3D笔记(十五):Unity 3D UI控件至尊–NGUI
目前,UGUI问世不过半年(其随着Unity 4.6发布问世),而市面上商用的产品,UI控件的至尊为NGUI:影响力和广度(可搜索公司招聘Unity 3D,常常能看到对NGUI关键词). NGUI虽然 ...
- PHP学习笔记 - 进阶篇(7)
PHP学习笔记 - 进阶篇(7) 文件操作 读取文件内容 PHP具有丰富的文件操作函数,最简单的读取文件的函数为file_get_contents,可以将整个文件全部读取到一个字符串中. $conte ...
- WebResponse 取出全国省市区的邮编
WebResponse用法(根据省市区地址查询其邮编): class Program { static string url { get; set; } static void Main(string ...