codeforces 590C C. Three States(bfs+连通块之间的最短距离)
题目链接:
5 seconds
512 megabytes
standard input
standard output
The famous global economic crisis is approaching rapidly, so the states of Berman, Berance and Bertaly formed an alliance and allowed the residents of all member states to freely pass through the territory of any of them. In addition, it was decided that a road between the states should be built to guarantee so that one could any point of any country can be reached from any point of any other State.
Since roads are always expensive, the governments of the states of the newly formed alliance asked you to help them assess the costs. To do this, you have been issued a map that can be represented as a rectangle table consisting of n rows and m columns. Any cell of the map either belongs to one of three states, or is an area where it is allowed to build a road, or is an area where the construction of the road is not allowed. A cell is called passable, if it belongs to one of the states, or the road was built in this cell. From any passable cells you can move up, down, right and left, if the cell that corresponds to the movement exists and is passable.
Your task is to construct a road inside a minimum number of cells, so that it would be possible to get from any cell of any state to any cell of any other state using only passable cells.
It is guaranteed that initially it is possible to reach any cell of any state from any cell of this state, moving only along its cells. It is also guaranteed that for any state there is at least one cell that belongs to it.
The first line of the input contains the dimensions of the map n and m (1 ≤ n, m ≤ 1000) — the number of rows and columns respectively.
Each of the next n lines contain m characters, describing the rows of the map. Digits from 1 to 3 represent the accessory to the corresponding state. The character '.' corresponds to the cell where it is allowed to build a road and the character '#' means no construction is allowed in this cell.
Print a single integer — the minimum number of cells you need to build a road inside in order to connect all the cells of all states. If such a goal is unachievable, print -1.
4 5
11..2
#..22
#.323
.#333
2
1 5
1#2#3
-1 题意: 给这样的一个图,问所有的编号1,2,3,的点时候连通,如果没有连通那么最少要把多少个点.变成数字才会连通;保证编号相同的点是连通的,而且编号相同的点之间距离相当于0; 思路: 先bfs一遍看是否连通,并把可以连通的.标记出来,然后分别以编号1,2,3的点为起点bfs,找到每个点到编号为1,2,3的点的最短距离,最后找答案的时候再扫一遍,
这点到编号1,2,3的最短距离和的最小值; AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e14;
const int N=5e5+;
int n,m,cnt;
char s[][];
int vis[][],dis[][][],flag[][];
int dir[][]={,,,-,,,-,};
int dp[][]; struct node
{
int x,y;
};
node temp;
void makepo(int a,int b)
{
temp.x=a,temp.y=b;
} queue<node>qu;
vector<node>ve[];
int bfs(int x,int y)
{
makepo(x,y);
vis[x][y]=;
flag[x][y]=;
qu.push(temp);
while(!qu.empty())
{
node fr=qu.front();
qu.pop();
if(s[fr.x][fr.y]!='.')cnt--;
for(int i=;i<;i++)
{
int fx=dir[i][]+fr.x,fy=dir[i][]+fr.y;
if(fx<||fx>n||fy<||fy>m)continue;
if(!vis[fx][fy]&&s[fx][fy]!='#')
{
vis[fx][fy]=;
flag[fx][fy]=;
makepo(fx,fy);
qu.push(temp);
}
}
}
if(cnt==)return ;
return ;
} void BFS(int start)
{
while(!qu.empty())qu.pop();
mst(vis,);
int len=ve[start].size();
for(int i=;i<len;i++)
{
node q=ve[start][i];
dis[start][q.x][q.y]=;
vis[q.x][q.y]=;
qu.push(q);
}
while(!qu.empty())
{
node fr=qu.front();
qu.pop(); for(int i=;i<;i++)
{
int fx=dir[i][]+fr.x,fy=dir[i][]+fr.y;
if(fx<||fx>n||fy<||fy>m)continue;
if(s[fx][fy]!='#'&&!vis[fx][fy])
{ if(s[fx][fy]>''&&s[fx][fy]<''&&s[fx][fy]!=''+start)
{
int c=s[fx][fy]-'';
int len=ve[c].size();
for(int j=;j<len;j++)
{
int ffx=ve[c][j].x,ffy=ve[c][j].y;
dis[start][ffx][ffy]=dis[start][fr.x][fr.y]+;
makepo(ffx,ffy);
vis[ffx][ffy]=;
qu.push(temp);
}
}
else {
vis[fx][fy]=;
dis[start][fx][fy]=dis[start][fr.x][fr.y]+;
makepo(fx,fy);
qu.push(temp);}
}
}
}
} int main()
{
int x,y;
read(n);read(m);
Riep(n)scanf("%s",s[i]+);
cnt=;
Riep(n)
{
Rjep(m)
{
if(s[i][j]==''||s[i][j]==''||s[i][j]=='')
{
makepo(i,j);
ve[s[i][j]-''].push_back(temp);
x=i,y=j;
cnt++;
}
}
}
if(bfs(x,y)){cout<<"-1"<<"\n";return ;}
BFS();
BFS();
BFS();
int ans=1e9;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(s[i][j]!='#'&&flag[i][j])
ans=min(ans,dis[][i][j]+dis[][i][j]+dis[][i][j]-);
}
}
cout<<ans<<"\n";
return ;
}
codeforces 590C C. Three States(bfs+连通块之间的最短距离)的更多相关文章
- C. Edgy Trees Codeforces Round #548 (Div. 2) 【连通块】
一.题面 here 二.分析 这题刚开始没读懂题意,后来明白了,原来就是一个数连通块里点数的问题.首先在建图的时候,只考虑红色路径上的点.为什么呢,因为为了不走红色的快,那么我们可以反着想只走红色的路 ...
- CodeForces 690D1 The Wall (easy) (判断连通块的数量)
题意:给定一个图,问你有几个连通块. 析:不用说了,最简单的DFS. 代码如下: #include <bits/stdc++.h> using namespace std; const i ...
- D. Lakes in Berland (DFS或者BFS +连通块
https://blog.csdn.net/guhaiteng/article/details/52730373 参考题解 http://codeforces.com/contest/723/prob ...
- DFS or BFS --- 连通块
Oil Deposits Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 Descrip ...
- Codeforces 987 K预处理BFS 3n,7n+1随机结论题/不动点逆序对 X&Y=0连边DFS求连通块数目
A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...
- 图-用DFS求连通块- UVa 1103和用BFS求最短路-UVa816。
这道题目甚长, 代码也是甚长, 但是思路却不是太难.然而有好多代码实现的细节, 确是十分的巧妙. 对代码阅读能力, 代码理解能力, 代码实现能力, 代码实现技巧, DFS方法都大有裨益, 敬请有兴趣者 ...
- ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds Me ...
- 【BZOJ 1098】办公楼(补图连通块个数,Bfs)
补图连通块个数这大概是一个套路吧,我之前没有见到过,想了好久都没有想出来QaQ 事实上这个做法本身就是一个朴素算法,但进行巧妙的实现,就可以分析出它的上界不会超过 $O(n + m)$. 接下来介绍一 ...
- ZOJ 3781 Paint the Grid Reloaded(DFS连通块缩点+BFS求最短路)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5268 题目大意:字符一样并且相邻的即为连通.每次可翻转一个连通块X( ...
随机推荐
- libevent库的使用方法
接写一个很简单的 Time Server 来当作例子:当你连上去以后 Server 端直接提供时间,然后结束连线.event_init() 表示初始化 libevent 所使用到的变数.event_s ...
- 组合View Controller时遇到的一点问题
View Controller的组合应用其实很常见了,比如说Tab bar controller和Navigation view controller的组合使用,像这种一般都是Navigation v ...
- SQL Server 批量插入数据的两种方法(转)
此文原创自CSDN TJVictor专栏:http://blog.csdn.net/tjvictor/archive/2009/07/18/4360030.aspx 在SQL Server 中插入一条 ...
- Delphi thread exception mechanism
http://www.techques.com/question/1-3627743/Delphi-thread-exception-mechanism i have a dilema on how ...
- IE下实现类似CSS3 text-shadow文字阴影的几种方法
IE下实现类似CSS3 text-shadow文字阴影的几种方法 一.开始的擦边话 为了测试IE9浏览器,下午晃晃荡荡把系统换成window7的了.果然,正如网上所传言的一样,IE9浏览器确实不支持C ...
- Linux系统编程——进程间通信:命名管道(FIFO)
命名管道的概述 无名管道,因为没有名字,仅仅能用于亲缘关系的进程间通信(很多其它详情.请看<无名管道>).为了克服这个缺点.提出了命名管道(FIFO).也叫有名管道.FIFO 文件. 命名 ...
- Android自己主动化測试解决方式
如今,已经有大量的Android自己主动化測试架构或工具可供我们使用,当中包含:Activity Instrumentation, MonkeyRunner, Robotium, 以及Robolect ...
- 如何利用PhoneGap制作地图APP
摘要:百度地图API是一套由javascript编写的地图程序接口,按说它应该运行在浏览器上.现在,只要利用PhoneGap,我们就能开发出移动平台上能使用的APP了! --------------- ...
- 使用NPOI导出DataTable到Excel
使用C#对DataTable导出到Excel是我们工作当中比较多用到的场景,微软提供了Microsoft.Office.Interop.Excel组件可以进行操作,但是该组件在数据量大的时候速度很慢, ...
- 五 Django 1.5.4 User Authentication 用户认证
一.创建drinker app ./manage.py startapp drinker 在INSTALL_APPS添加drinker 用户的Profile模型,django里面是可以自定义的. 通过 ...