题目链接:

C. Three States

time limit per test

5 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

The famous global economic crisis is approaching rapidly, so the states of Berman, Berance and Bertaly formed an alliance and allowed the residents of all member states to freely pass through the territory of any of them. In addition, it was decided that a road between the states should be built to guarantee so that one could any point of any country can be reached from any point of any other State.

Since roads are always expensive, the governments of the states of the newly formed alliance asked you to help them assess the costs. To do this, you have been issued a map that can be represented as a rectangle table consisting of n rows and m columns. Any cell of the map either belongs to one of three states, or is an area where it is allowed to build a road, or is an area where the construction of the road is not allowed. A cell is called passable, if it belongs to one of the states, or the road was built in this cell. From any passable cells you can move up, down, right and left, if the cell that corresponds to the movement exists and is passable.

Your task is to construct a road inside a minimum number of cells, so that it would be possible to get from any cell of any state to any cell of any other state using only passable cells.

It is guaranteed that initially it is possible to reach any cell of any state from any cell of this state, moving only along its cells. It is also guaranteed that for any state there is at least one cell that belongs to it.

 
Input
 

The first line of the input contains the dimensions of the map n and m (1 ≤ n, m ≤ 1000) — the number of rows and columns respectively.

Each of the next n lines contain m characters, describing the rows of the map. Digits from 1 to 3 represent the accessory to the corresponding state. The character '.' corresponds to the cell where it is allowed to build a road and the character '#' means no construction is allowed in this cell.

 
Output
 

Print a single integer — the minimum number of cells you need to build a road inside in order to connect all the cells of all states. If such a goal is unachievable, print -1.

 
Examples
 
input
4 5
11..2
#..22
#.323
.#333
output
2
input
1 5
1#2#3
output
-1

题意:

给这样的一个图,问所有的编号1,2,3,的点时候连通,如果没有连通那么最少要把多少个点.变成数字才会连通;保证编号相同的点是连通的,而且编号相同的点之间距离相当于0;

思路:

先bfs一遍看是否连通,并把可以连通的.标记出来,然后分别以编号1,2,3的点为起点bfs,找到每个点到编号为1,2,3的点的最短距离,最后找答案的时候再扫一遍,
这点到编号1,2,3的最短距离和的最小值; AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e14;
const int N=5e5+;
int n,m,cnt;
char s[][];
int vis[][],dis[][][],flag[][];
int dir[][]={,,,-,,,-,};
int dp[][]; struct node
{
int x,y;
};
node temp;
void makepo(int a,int b)
{
temp.x=a,temp.y=b;
} queue<node>qu;
vector<node>ve[];
int bfs(int x,int y)
{
makepo(x,y);
vis[x][y]=;
flag[x][y]=;
qu.push(temp);
while(!qu.empty())
{
node fr=qu.front();
qu.pop();
if(s[fr.x][fr.y]!='.')cnt--;
for(int i=;i<;i++)
{
int fx=dir[i][]+fr.x,fy=dir[i][]+fr.y;
if(fx<||fx>n||fy<||fy>m)continue;
if(!vis[fx][fy]&&s[fx][fy]!='#')
{
vis[fx][fy]=;
flag[fx][fy]=;
makepo(fx,fy);
qu.push(temp);
}
}
}
if(cnt==)return ;
return ;
} void BFS(int start)
{
while(!qu.empty())qu.pop();
mst(vis,);
int len=ve[start].size();
for(int i=;i<len;i++)
{
node q=ve[start][i];
dis[start][q.x][q.y]=;
vis[q.x][q.y]=;
qu.push(q);
}
while(!qu.empty())
{
node fr=qu.front();
qu.pop(); for(int i=;i<;i++)
{
int fx=dir[i][]+fr.x,fy=dir[i][]+fr.y;
if(fx<||fx>n||fy<||fy>m)continue;
if(s[fx][fy]!='#'&&!vis[fx][fy])
{ if(s[fx][fy]>''&&s[fx][fy]<''&&s[fx][fy]!=''+start)
{
int c=s[fx][fy]-'';
int len=ve[c].size();
for(int j=;j<len;j++)
{
int ffx=ve[c][j].x,ffy=ve[c][j].y;
dis[start][ffx][ffy]=dis[start][fr.x][fr.y]+;
makepo(ffx,ffy);
vis[ffx][ffy]=;
qu.push(temp);
}
}
else {
vis[fx][fy]=;
dis[start][fx][fy]=dis[start][fr.x][fr.y]+;
makepo(fx,fy);
qu.push(temp);}
}
}
}
} int main()
{
int x,y;
read(n);read(m);
Riep(n)scanf("%s",s[i]+);
cnt=;
Riep(n)
{
Rjep(m)
{
if(s[i][j]==''||s[i][j]==''||s[i][j]=='')
{
makepo(i,j);
ve[s[i][j]-''].push_back(temp);
x=i,y=j;
cnt++;
}
}
}
if(bfs(x,y)){cout<<"-1"<<"\n";return ;}
BFS();
BFS();
BFS();
int ans=1e9;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(s[i][j]!='#'&&flag[i][j])
ans=min(ans,dis[][i][j]+dis[][i][j]+dis[][i][j]-);
}
}
cout<<ans<<"\n";
return ;
}

codeforces 590C C. Three States(bfs+连通块之间的最短距离)的更多相关文章

  1. C. Edgy Trees Codeforces Round #548 (Div. 2) 【连通块】

    一.题面 here 二.分析 这题刚开始没读懂题意,后来明白了,原来就是一个数连通块里点数的问题.首先在建图的时候,只考虑红色路径上的点.为什么呢,因为为了不走红色的快,那么我们可以反着想只走红色的路 ...

  2. CodeForces 690D1 The Wall (easy) (判断连通块的数量)

    题意:给定一个图,问你有几个连通块. 析:不用说了,最简单的DFS. 代码如下: #include <bits/stdc++.h> using namespace std; const i ...

  3. D. Lakes in Berland (DFS或者BFS +连通块

    https://blog.csdn.net/guhaiteng/article/details/52730373 参考题解 http://codeforces.com/contest/723/prob ...

  4. DFS or BFS --- 连通块

    Oil Deposits Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 Descrip ...

  5. Codeforces 987 K预处理BFS 3n,7n+1随机结论题/不动点逆序对 X&Y=0连边DFS求连通块数目

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...

  6. 图-用DFS求连通块- UVa 1103和用BFS求最短路-UVa816。

    这道题目甚长, 代码也是甚长, 但是思路却不是太难.然而有好多代码实现的细节, 确是十分的巧妙. 对代码阅读能力, 代码理解能力, 代码实现能力, 代码实现技巧, DFS方法都大有裨益, 敬请有兴趣者 ...

  7. ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds      Me ...

  8. 【BZOJ 1098】办公楼(补图连通块个数,Bfs)

    补图连通块个数这大概是一个套路吧,我之前没有见到过,想了好久都没有想出来QaQ 事实上这个做法本身就是一个朴素算法,但进行巧妙的实现,就可以分析出它的上界不会超过 $O(n + m)$. 接下来介绍一 ...

  9. ZOJ 3781 Paint the Grid Reloaded(DFS连通块缩点+BFS求最短路)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5268 题目大意:字符一样并且相邻的即为连通.每次可翻转一个连通块X( ...

随机推荐

  1. 71道经典Android面试题和答案

    ,,面试题1.        下列哪些语句关于内存回收的说明是正确的? (b ) A. 程序员必须创建一个线程来释放内存  B.内存回收程序负责释放无用内存   C.内存回收程序允许程序员直接释放内存 ...

  2. uva167 - The Sultan's Successors

      题意:八皇后问题的扩展.8*8棋盘上每个格子都有一个整数,要求8个皇后所在格子的数字之后最大 解法一,回溯: 用vis数组记录 列,主对角(y-x), 副对角(y+x) 访问情况 #include ...

  3. C++ Primer 学习笔记_67_面向对象编程 --转换与继承、复制控制与继承

    面向对象编程 --转换与继承.复制控制与继承 I.转换与继承 引言: 由于每一个派生类对象都包括一个基类部分,因此能够像使用基类对象一样在派生类对象上执行操作. 对于指针/引用,能够将派生类对象的指针 ...

  4. 【机试题】c# 是否是素数,找出比它大的第一个素数

    题目: 输入一个自然数 判断是否是素数,是素数则提示是素数,否则找出比它大的第一个素数 代码: Console.WriteLine("请输入任意一个自然数."); string n ...

  5. Codeforces Round #180 (Div. 2) A. Snow Footprints 贪心

    A. Snow Footprints 题目连接: http://www.codeforces.com/contest/298/problem/A Description There is a stra ...

  6. defer属性---->执行外部脚本

    HTML4---->只有IE支持 不需要是外部脚本. HTML5---->主流都支持 defer 属性仅适用于外部脚本(只有在使用 src 属性时) 值 描述 defer 规定当页面已完成 ...

  7. png图片那点事

    PNG图片格式现在包含三种类型: 1.PNG8       256色PNG的别名 2.PNG24     全色PNG的别名 3.PNG32     全色PNG的别名 基本上PNG32就是PNG24,但 ...

  8. DB2 重新设定表自增字段的当前值

    转自:http://blog.csdn.net/jionghan3855/article/details/2709073 1.ALTER TABLE UKEY_INFO_TAB ALTER COLUM ...

  9. Lucene的DocFieldProcessor类

    DocFieldProcessor类的任务1 按顺序存储所有的field和对应的fieldinfo2 为当前这篇doc的field按照fieldname来建立hash索引3 调用InvertedDoc ...

  10. javascript中的原型和闭包

    定义 //闭包测试 function bbTest() { var local = "这里是本地变量"; //闭包会扩大局部变量的作用域,具备变量一致会存活到函数之外,在函数之外可 ...