codeforces 590C C. Three States(bfs+连通块之间的最短距离)
题目链接:
5 seconds
512 megabytes
standard input
standard output
The famous global economic crisis is approaching rapidly, so the states of Berman, Berance and Bertaly formed an alliance and allowed the residents of all member states to freely pass through the territory of any of them. In addition, it was decided that a road between the states should be built to guarantee so that one could any point of any country can be reached from any point of any other State.
Since roads are always expensive, the governments of the states of the newly formed alliance asked you to help them assess the costs. To do this, you have been issued a map that can be represented as a rectangle table consisting of n rows and m columns. Any cell of the map either belongs to one of three states, or is an area where it is allowed to build a road, or is an area where the construction of the road is not allowed. A cell is called passable, if it belongs to one of the states, or the road was built in this cell. From any passable cells you can move up, down, right and left, if the cell that corresponds to the movement exists and is passable.
Your task is to construct a road inside a minimum number of cells, so that it would be possible to get from any cell of any state to any cell of any other state using only passable cells.
It is guaranteed that initially it is possible to reach any cell of any state from any cell of this state, moving only along its cells. It is also guaranteed that for any state there is at least one cell that belongs to it.
The first line of the input contains the dimensions of the map n and m (1 ≤ n, m ≤ 1000) — the number of rows and columns respectively.
Each of the next n lines contain m characters, describing the rows of the map. Digits from 1 to 3 represent the accessory to the corresponding state. The character '.' corresponds to the cell where it is allowed to build a road and the character '#' means no construction is allowed in this cell.
Print a single integer — the minimum number of cells you need to build a road inside in order to connect all the cells of all states. If such a goal is unachievable, print -1.
4 5
11..2
#..22
#.323
.#333
2
1 5
1#2#3
-1 题意: 给这样的一个图,问所有的编号1,2,3,的点时候连通,如果没有连通那么最少要把多少个点.变成数字才会连通;保证编号相同的点是连通的,而且编号相同的点之间距离相当于0; 思路: 先bfs一遍看是否连通,并把可以连通的.标记出来,然后分别以编号1,2,3的点为起点bfs,找到每个点到编号为1,2,3的点的最短距离,最后找答案的时候再扫一遍,
这点到编号1,2,3的最短距离和的最小值; AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e14;
const int N=5e5+;
int n,m,cnt;
char s[][];
int vis[][],dis[][][],flag[][];
int dir[][]={,,,-,,,-,};
int dp[][]; struct node
{
int x,y;
};
node temp;
void makepo(int a,int b)
{
temp.x=a,temp.y=b;
} queue<node>qu;
vector<node>ve[];
int bfs(int x,int y)
{
makepo(x,y);
vis[x][y]=;
flag[x][y]=;
qu.push(temp);
while(!qu.empty())
{
node fr=qu.front();
qu.pop();
if(s[fr.x][fr.y]!='.')cnt--;
for(int i=;i<;i++)
{
int fx=dir[i][]+fr.x,fy=dir[i][]+fr.y;
if(fx<||fx>n||fy<||fy>m)continue;
if(!vis[fx][fy]&&s[fx][fy]!='#')
{
vis[fx][fy]=;
flag[fx][fy]=;
makepo(fx,fy);
qu.push(temp);
}
}
}
if(cnt==)return ;
return ;
} void BFS(int start)
{
while(!qu.empty())qu.pop();
mst(vis,);
int len=ve[start].size();
for(int i=;i<len;i++)
{
node q=ve[start][i];
dis[start][q.x][q.y]=;
vis[q.x][q.y]=;
qu.push(q);
}
while(!qu.empty())
{
node fr=qu.front();
qu.pop(); for(int i=;i<;i++)
{
int fx=dir[i][]+fr.x,fy=dir[i][]+fr.y;
if(fx<||fx>n||fy<||fy>m)continue;
if(s[fx][fy]!='#'&&!vis[fx][fy])
{ if(s[fx][fy]>''&&s[fx][fy]<''&&s[fx][fy]!=''+start)
{
int c=s[fx][fy]-'';
int len=ve[c].size();
for(int j=;j<len;j++)
{
int ffx=ve[c][j].x,ffy=ve[c][j].y;
dis[start][ffx][ffy]=dis[start][fr.x][fr.y]+;
makepo(ffx,ffy);
vis[ffx][ffy]=;
qu.push(temp);
}
}
else {
vis[fx][fy]=;
dis[start][fx][fy]=dis[start][fr.x][fr.y]+;
makepo(fx,fy);
qu.push(temp);}
}
}
}
} int main()
{
int x,y;
read(n);read(m);
Riep(n)scanf("%s",s[i]+);
cnt=;
Riep(n)
{
Rjep(m)
{
if(s[i][j]==''||s[i][j]==''||s[i][j]=='')
{
makepo(i,j);
ve[s[i][j]-''].push_back(temp);
x=i,y=j;
cnt++;
}
}
}
if(bfs(x,y)){cout<<"-1"<<"\n";return ;}
BFS();
BFS();
BFS();
int ans=1e9;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(s[i][j]!='#'&&flag[i][j])
ans=min(ans,dis[][i][j]+dis[][i][j]+dis[][i][j]-);
}
}
cout<<ans<<"\n";
return ;
}
codeforces 590C C. Three States(bfs+连通块之间的最短距离)的更多相关文章
- C. Edgy Trees Codeforces Round #548 (Div. 2) 【连通块】
一.题面 here 二.分析 这题刚开始没读懂题意,后来明白了,原来就是一个数连通块里点数的问题.首先在建图的时候,只考虑红色路径上的点.为什么呢,因为为了不走红色的快,那么我们可以反着想只走红色的路 ...
- CodeForces 690D1 The Wall (easy) (判断连通块的数量)
题意:给定一个图,问你有几个连通块. 析:不用说了,最简单的DFS. 代码如下: #include <bits/stdc++.h> using namespace std; const i ...
- D. Lakes in Berland (DFS或者BFS +连通块
https://blog.csdn.net/guhaiteng/article/details/52730373 参考题解 http://codeforces.com/contest/723/prob ...
- DFS or BFS --- 连通块
Oil Deposits Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 Descrip ...
- Codeforces 987 K预处理BFS 3n,7n+1随机结论题/不动点逆序对 X&Y=0连边DFS求连通块数目
A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...
- 图-用DFS求连通块- UVa 1103和用BFS求最短路-UVa816。
这道题目甚长, 代码也是甚长, 但是思路却不是太难.然而有好多代码实现的细节, 确是十分的巧妙. 对代码阅读能力, 代码理解能力, 代码实现能力, 代码实现技巧, DFS方法都大有裨益, 敬请有兴趣者 ...
- ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds Me ...
- 【BZOJ 1098】办公楼(补图连通块个数,Bfs)
补图连通块个数这大概是一个套路吧,我之前没有见到过,想了好久都没有想出来QaQ 事实上这个做法本身就是一个朴素算法,但进行巧妙的实现,就可以分析出它的上界不会超过 $O(n + m)$. 接下来介绍一 ...
- ZOJ 3781 Paint the Grid Reloaded(DFS连通块缩点+BFS求最短路)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5268 题目大意:字符一样并且相邻的即为连通.每次可翻转一个连通块X( ...
随机推荐
- Linux下生成动态链接库是否必须使用 -fPIC 的问题[转]
在 Linux 下制作动态链接库,“标准” 的做法是编译成位置无关代码(Position Independent Code,PIC),然后链接成一个动态链接库.经常遇到的一个问题是 -fPIC 是不是 ...
- C# 获取字符串中的数字
/// <summary> /// 获取字符串中的数字(不包含小数点) /// </summary> /// <param name="str"> ...
- 4.接口隔离原则(Interface Segregation Principle)
1.定义 客户端不应该依赖它不需要的接口: 一个类对另一个类的依赖应该建立在最小的接口上. 2.定义解读 定义包含三层含义: 一个类对另一个类的依赖应该建立在最小的接口上: 一个接口代表一个角色,不应 ...
- PHP 打印调用函数入口地址(堆栈),方便调式
今天网站出现一个BUG,然后直接在数据库类里面写日志,看是哪条SQL出了问题,SQL语句到是找到了,但是不知道这条SQL语句来自何处,于是就想啊,如果能有一个办法,查看当前正在运行的这个方法是被哪个方 ...
- Ajax的常用框架有哪些?
AJAX(Asynchronous JavaScript and XML,异步JavaScript和XML),是创建交互式Web应用的主要开发技术.互联网中也有大量的关于AJAX的框架,本文汇总了最常 ...
- SQL Server2005中使用XML-数据类型、查询与修改
SQL 2005引进了XML数据类型,可以直接将XML当作字符串直接存入该列. 这样可以不需要对它进行XML解析. USE AdventureWorks -- 创建一个送货排程表 CREATE TAB ...
- C# WinForm使用Aspose.Cells.dll 导出导入Excel/Doc 完整实例教程
1.添加引用: Aspose.Cells.dll(我们就叫工具包吧,可以从网上下载.关于它的操作我在“Aspose.Cells操作说明 中文版 下载 Aspose C# 导出Excel 实例”一文中的 ...
- 使用命令行工具将Android应用转换成BlackBerry PlayBook应用
昨天写了篇文章关于Android应用转换的,通过BlackBerry的在线转换工具将Android应用转换成BlackBerry PlayBook应用.有网友反映说方法有点麻烦,所以今天补上新的转换方 ...
- 构建移动Web应用程序的技术堆栈
编写web应用程序时,有很多的技术决策.笔者最近回来编写现代Web应用程序,并希望总结一些曾经在开发周期过程中做了记录零散的想法.这篇文章是关于一套对笔者最近开发的项目有帮助的框架.笔者重温了一些最重 ...
- [Angular2 Router] Using snapshot in Router
In the application, we have heros list, when click each hero, will redirect to hero detail view. Tha ...