The Sum of the k-th Powers

There are well-known formulas: , , . Also mathematicians found similar formulas for higher degrees.

Find the value of the sum modulo 109 + 7 (so you should find the remainder after dividing the answer by the value 109 + 7).

Input

The only line contains two integers n, k (1 ≤ n ≤ 109, 0 ≤ k ≤ 106).

Output

Print the only integer a — the remainder after dividing the value of the sum by the value 109 + 7.

Examples
Input
4 1
Output
10

拉格朗日插值:本质就是通过给定函数的n个点,求未知自变量的函数值;万能公式
细节:题目中给了k前几项的n的通项公式,其中n的最高次为k + 1次;由拉格朗日插值的构造多项式知,当代入k个点时,得到的是k - 1次多项式,
所以要得到最终的k + 1次多项式就需要先求出在函数中的k+2,这样就可以按照得到的多项式代入n求出最终的结果;
 
pi就是已知点的函数值,原本得到的k + 1次多项式n是x才对,这里直接将n替换成了x,得到的就是最终的结果;因为我们知道最终的多项式的次数(关键)
实现细节: 对内层阶乘先预处理出来,但是里面并不是连续的阶乘,需要用到乘法逆元,即欧拉函数推导式;至于分母的正负,可以求完逆元之后在判断(这并没有证明)
时间复杂度:对于n小于maxn时,其实是可以直接求的,时间复杂度为O(maxn*log(maxn));但是当n接近1e9时,一定要用拉格朗日插值法,时间复杂度为O(klog(k));
#include<bits/stdc++.h>
using namespace std;
typedef __int64 ll;
const int mod = 1e9 + ;
const int maxn = 1e6 + ;
ll p[maxn],fac[maxn];
ll pow_mod(ll a,ll n)
{
ll ans = ;
while(n){
if(n & ) ans = ans*a%mod;
a = a*a%mod;
n >>= ;
}
return ans;
}
int main()
{
int n,k;
scanf("%d%d",&n,&k);
p[] = ;
for(int i = ;i <= k + ;i++)
p[i] = (p[i - ] + pow_mod(i,k))%mod;
if(n <= k + )
return printf("%I64d",p[n]),;
fac[] = ;
for(int i = ;i <= k + ;i++)
fac[i] = fac[i - ]*i%mod;
ll t = ;
for(int i = ;i <= k+; i++)
t = (n - i)*t%mod;
ll ans = ;
for(int i = ;i <= k + ;i++){
ll t1 = pow_mod(fac[i-]*fac[k+-i]%mod,mod - );//求解逆元
ll t2 = pow_mod(n-i,mod - )%mod;
if((k+-i)&) t1 = -t1;
ans = (ans + p[i]*t%mod*t2%mod*t1%mod + mod)%mod;
}
cout<<ans;
}
 

Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值的更多相关文章

  1. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

  2. [Educational Codeforces Round 7]F. The Sum of the k-th Powers

    FallDream dalao找的插值练习题 题目大意:给定n,k,求Σi^k (i=1~n),对1e9+7取模.(n<=10^9,k<=10^6) 思路:令f(n)=Σi^k (i=1~ ...

  3. 【Educational Codeforces Round 37 F】SUM and REPLACE

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 那个D函数它的下降速度是很快的. 也就是说到最后他会很快的变成2或者1 而D(2)==2,D(1)=1 也就是说,几次操作过后很多数 ...

  4. Educational Codeforces Round 40 F. Runner's Problem

    Educational Codeforces Round 40 F. Runner's Problem 题意: 给一个$ 3 * m \(的矩阵,问从\)(2,1)$ 出发 走到 \((2,m)\) ...

  5. Educational Codeforces Round 53 E. Segment Sum(数位DP)

    Educational Codeforces Round 53 E. Segment Sum 题意: 问[L,R]区间内有多少个数满足:其由不超过k种数字构成. 思路: 数位DP裸题,也比较好想.由于 ...

  6. Educational Codeforces Round 26 F. Prefix Sums 二分,组合数

    题目链接:http://codeforces.com/contest/837/problem/F 题意:如题QAQ 解法:参考题解博客:http://www.cnblogs.com/FxxL/p/72 ...

  7. Educational Codeforces Round 14 - F (codeforces 691F)

    题目链接:http://codeforces.com/problemset/problem/691/F 题目大意:给定n个数,再给m个询问,每个询问给一个p,求n个数中有多少对数的乘积≥p 数据范围: ...

  8. Educational Codeforces Round 1 A. Tricky Sum 暴力

    A. Tricky Sum Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/598/problem ...

  9. Educational Codeforces Round 23 F. MEX Queries 离散化+线段树

    F. MEX Queries time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

随机推荐

  1. Vmware中为Mac Os安装vmtools

    成功方法: 1. 在VMWare中点击edit this virtual machine 2. 添加CD/DVD,使用iso,找到那个darwin.iso 3. 在setting里面,点击CD/DVD ...

  2. java_jdbc_3层 解耦

    Dao - 提供接口 DaoImpl - 实现 DaoFactory - 工厂模式获取实现 DaoExcetpion - jdbc异常处理 实现runtime exception类即可 TestDem ...

  3. How to Tune Java Garbage Collection--reference

    reference:http://architects.dzone.com/articles/how-tune-java-garbage The Performance Zone is support ...

  4. ADO.Net 之 数据库连接池(一)

    1. 什么是连接池? 我们都知道,建立一个数据库连接是一件非常耗时(消耗时间)耗力(消耗资源)的事情.之所以会这样,是因为连接到数据库服务器需要经历几个漫长的过程:建立物理通道(例如套接字或命名管道) ...

  5. DHCP服务自动分配IP地址原理

    转载自:http://blog.csdn.net/lycb_gz/article/details/8499559 DHCP在提供服务时,DHCP客户端是以UDP 68号端口进行数据传输的,而DHCP服 ...

  6. 2013 ACM/ICPC 长沙现场赛 A题 - Alice's Print Service (ZOJ 3726)

    Alice's Print Service Time Limit: 2 Seconds      Memory Limit: 65536 KB Alice is providing print ser ...

  7. MySQL flush privileges 명령어

    INSERT나 UPDATE, DELETE문을 이용해서 MySQL의 사용자를 추가,삭제하거나, 사용자 권한 등을 변경하였을 때, MySQL에 변경사항을 적용하기 위해서 사용하는 명령 ...

  8. 使用PSSH批量SSH操作Linux服务器

    http://www.opstool.com/article/266 服务器多了,有一个烦恼就是如何批量快速操作一堆服务器.这里我推荐一下经常使用利器pssh.这个工具给我的工作带来了莫大的帮助. 简 ...

  9. 第四章 jQuery中的事件

    1.加载DOM jQuery中,在$(document).ready()方法内注册的事件,只要DOM就绪就会被执行,此时可能元素的关联文件未下载完. jQuery中的 load()方法,会在元素的on ...

  10. SQL server 的约束条件【转】

    SQLServer - 约束 一.约束的分类 在SQLServer中,有3种不同类型的约束. 1.实体约束 实体约束是关于行的,比如某一行出现的值就不允许出现在其他行,例如主键. 2.域约束 域约束是 ...