题意:

一个正方形中有n道竖直的墙,每道墙上开两个门。求从左边中点走到右边中点的最短距离。

分析:

以起点终点和每个门的两个端点建图,如果两个点可以直接相连(即不会被墙挡住),则权值为两点间的欧几里得距离。

然后求起点到终点的最短路即可。

 #include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std; const int maxn = ;
const double INF = 1e4;
const double eps = 1e-; struct Point
{
double x, y;
Point(double x=, double y=):x(x), y(y) {}
}p[maxn * ]; typedef Point Vector; Point read_point()
{
double x, y;
scanf("%lf%lf", &x, &y);
return Point(x, y);
} Point operator - (const Point& A, const Point& B)
{ return Point(A.x-B.x, A.y-B.y); } Vector operator / (const Vector& A, double p)
{ return Vector(A.x/p, A.y/p); } double Dot(const Vector& A, const Vector& B)
{ return A.x*B.x + A.y*B.y; } double Length(const Vector& A)
{ return sqrt(Dot(A, A)); } struct Door
{
double x, y1, y2, y3, y4;
Door(double x=, double y1=, double y2=, double y3=, double y4=):x(x), y1(y1), y2(y2), y3(y3), y4(y4) {}
}; vector<Door> door; double d[maxn * ], w[maxn * ][maxn * ];
bool vis[maxn * ];
int cnt; bool isOK(int a, int b)
{//判断两点是否能直接到达
if(p[a].x >= p[b].x) swap(a, b);
for(int i = ; i < door.size(); ++i)
{
if(door[i].x <= p[a].x) continue;
if(door[i].x >= p[b].x) break;
double k = (p[b].y-p[a].y) / (p[b].x-p[a].x);
double y = p[a].y + k * (door[i].x - p[a].x);
if(!(y>=door[i].y1&&y<=door[i].y2 || y>=door[i].y3&&y<=door[i].y4)) return false;
}
return true;
} void Init()
{
for(int i = ; i < cnt; ++i)
for(int j = i; j < cnt; ++j)
if(i == j) w[i][j] = ;
else w[i][j] = w[j][i] = INF;
} int main()
{
//freopen("in.txt", "r", stdin); int n;
while(scanf("%d", &n) == && n + )
{
door.clear();
memset(vis, false, sizeof(vis));
memset(d, , sizeof(d)); p[] = Point(, );
cnt = ;
for(int i = ; i < n; ++i)
{
double x, y[];
scanf("%lf", &x);
for(int j = ; j < ; ++j) { scanf("%lf", &y[j]); p[cnt++] = Point(x, y[j]); }
door.push_back(Door(x, y[], y[], y[], y[]));
}
p[cnt++] = Point(, ); Init(); for(int i = ; i < cnt; ++i)
for(int j = i+; j < cnt; ++j)
{
double l = Length(Vector(p[i]-p[j]));
if(p[i].x == p[j].x) continue;
if(isOK(i, j))
w[i][j] = w[j][i] = l;
}
//Dijkstra
d[] = ;
for(int i = ; i < cnt; ++i) d[i] = INF;
for(int i = ; i < cnt; ++i)
{
int x;
double m = INF;
for(int y = ; y < cnt; ++y) if(!vis[y] && d[y] <= m) m = d[x=y];
vis[x] = ;
for(int y = ; y < cnt; ++y) d[y] = min(d[y], d[x] + w[x][y]);
} printf("%.2f\n", d[cnt-]);
} return ;
}

代码君

POJ (线段相交 最短路) The Doors的更多相关文章

  1. POJ_1556_The Doors_判断线段相交+最短路

    POJ_1556_The Doors_判断线段相交+最短路 Description You are to find the length of the shortest path through a ...

  2. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

  3. POJ 1556 The Doors(线段相交+最短路)

    题目: Description You are to find the length of the shortest path through a chamber containing obstruc ...

  4. POJ 2556 (判断线段相交 + 最短路)

    题目: 传送门 题意:在一个左小角坐标为(0, 0),右上角坐标为(10, 10)的房间里,有 n 堵墙,每堵墙都有两个门.每堵墙的输入方式为 x, y1, y2, y3, y4,x 是墙的横坐标,第 ...

  5. POJ 1556 计算几何 判断线段相交 最短路

    题意: 在一个左下角坐标为(0,0),右上角坐标为(10,10)的矩形内,起点为(0,5),终点为(10,5),中间会有许多扇垂直于x轴的门,求从起点到终点在能走的情况下的最短距离. 分析: 既然是求 ...

  6. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  7. POJ 1556 The Doors(线段交+最短路)

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5210   Accepted: 2124 Descrip ...

  8. POJ 1556 The Doors(线段交+最短路)

    #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm& ...

  9. poj 1066 线段相交

    链接:http://poj.org/problem?id=1066 Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

随机推荐

  1. 各种语言简单的输出Hello World

    PHP echo 'Hello World'; Java System.out.println("Hello World"); Shell_(BashShell) echo Hel ...

  2. RFC822DateGMT

    function RFC822DateGMT(dd: TDateTime): string; const Days:..] of string= ('Sun','Mon','Tue','Wed','T ...

  3. Python学习_从文件读取数据和保存数据

    运用Python中的内置函数open()与文件进行交互 在HeadFirstPython网站中下载所有文件,解压后以chapter 3中的“sketch.txt”为例: 新建IDLE会话,首先导入os ...

  4. The Best Rank (25)(排名算法)

    To evaluate the performance of our first year CS majored students, we consider their grades of three ...

  5. envi中多波段图层叠加layer stacking

    Basic Tools——layer stacking 选择投影和输出的文件 波段1-7波段图层都叠加在一个文件中了

  6. Linux内核树的建立-基于ubuntu系统

    刚看 O'REILLY 写的<LINUX 设备驱动程序>时.作者一再强调在编写驱动程序时必须 建立内核树.先前的内核只需要有一套内核头文件就够了,但因为2.6的内核模块吆喝内核源码树中的目 ...

  7. 视网膜New iPad与普通分辨率iPad页面的兼容处理

    一.这是篇经验分享 就算不是果粉也应该知道,iPad2与new iPad的重大区别之一就是显示屏的分辨率.new iPad显示屏被称之为“视网膜显示屏”,其设备分辨比(之前有详细介绍,点击这里查看)是 ...

  8. 汽车之家, 比亚迪等成为开源数据库SSDB的用户

    开源的 NoSQL 数据库 SSDB 已经一岁多了! 在这一年中, SSDB 不断被应用在众多业界知名互联网企业, 创业团队的产品中. 最近, 比亚迪汽车也成为 SSDB 的用户, 其将 SSDB 作 ...

  9. js 判断页面加载状态

    //----判断当前页面是否加载状态 开始 ---- document.onreadystatechange = subSomething;//当页面加载状态改变的时候执行这个方法. function ...

  10. setTimeOut传参数(转)

    无论是window.setTimeout还是window.setInterval,在使用函数名作为调用句柄时都不能带参数.带参数则立马执行,没有延时效果.可通过下面方式实现.  <script  ...