【spfa】bzoj3921 Mimori与树海
考虑“删除后图仍连通”,即其不是无向图的桥(bridge),可以用Tarjan算法预处理,这里不赘述。
【算法一】
枚举删除的是哪条边,然后枚举起点,暴搜,统计答案。
可以通过0、1号测试点。
预计得分:20分。
【算法二】
枚举删除的是哪条边,接着,
①枚举起点,∵op=0,∴裸最短路,Heap-dijkstra/SPFA。时间复杂度: O(m2*n*logn)/O(m2*n*k)。
②Floyd,时间复杂度O(m*n3)。
可以通过0、1、2、3号测试点。
预计得分:40分。
【算法三】
枚举删的是哪条边,接着,枚举终点,逆着推回去,考虑op=1的边,则有w[U][V]=(dis[U]+18)/19。然后跑Heap-dijkstra/SPFA即可。
时间复杂度:O(m2*n*logn)/O(m2*n*k)。
可以通过0、1、2、3、4、5号测试点。
预计得分:60分。
【算法四】
考虑删除某条边E后,以某个点U为终点的最短路是否发生变化。
我们发现,在某个无向图中,以U为根节点,到其他所有点的最短路构成了一棵树,即“最短路树(shortest-path tree)”。我们删除的边如果不在最短路树上,对当前图中的以U为起点的所有最短路不发生变化。
我们可以在Heap-dijkstra/SPFA的同时处理出最短路树:
if(dis[V]>dis[U]+w[U][V]) TreeEdge[S][V]=Edge[U][V];
//TreeEdge[S][V]表示以S为起点的单源最短路树中,V结点的父边。
于是算法得出:
首先枚举终点,然后枚举删除的边,仅仅需要重复求删除n-1条在最短路树上的边的答案即可,其他的边可以直接用之前预处理的答案就好了。
时间复杂度:O(n2*m*logn)/O(n2*k*m)。Heap-dijkstra可能需要卡常数。
预计得分:100分。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
#define N 111
#define M 1101
queue<int>q;
int dis[N],ans,ans2[M<<1],sumv[N],need[N];
int n,m,first[N],next[M<<1],v[M<<1],en,TEs[N][N]/*树边*/,x,y,es[N][N];
bool w[M<<1]/*道路类型*/,z,Del[M<<1]/*当前删除的边*/,ontree[N][M<<1]
/*ontree[i][j]表示边j是否在以i为汇点的最短路树上*/,inq[N];
void AddEdge(const int &U,const int &V,const bool &W)
{
v[en]=V; w[en]=W;
next[en]=first[U];
first[U]=en;
es[U][V]=en++;
}
int calc(const int &U,const bool &op){return op ? (dis[U]+18)/19 : 1;}
void spfa(const int &s,const bool &op)
{
memset(dis,0x7f,sizeof(dis));
memset(inq,0,sizeof(inq));
dis[s]=need[s]; inq[s]=1; q.push(s);
while(!q.empty())
{
int U=q.front();
for(int i=first[U];i!=-1;i=next[i]) if(!Del[i])
{
int C=calc(U,w[i]);
if(dis[v[i]]>dis[U]+C)
{
if(!op) TEs[s][v[i]]=es[U][v[i]];
dis[v[i]]=dis[U]+C;
if(!inq[v[i]])
q.push(v[i]),inq[v[i]]=1;
}
}
q.pop(); inq[U]=0;
}
if(!op)
{
for(int i=1;i<=n;++i)
sumv[s]+=dis[i];
ans+=sumv[s];
for(int i=1;i<=n;++i)
if(i!=s)
ontree[s][TEs[s][i]]=ontree[s][TEs[s][i]^1]=1;
}
}
int dfn[N],dep;
bool bridge[M<<1];
int Tarjan(int U,int fa)
{
int lowU=dfn[U]=++dep;
for(int i=first[U];i!=-1;i=next[i])
if(!dfn[v[i]])
{
int lowV=Tarjan(v[i],U);
lowU=min(lowU,lowV);
if(lowV>dfn[U])
bridge[i]=bridge[i^1]=1;
}
else if(v[i]!=fa)
lowU=min(lowU,dfn[v[i]]);
return lowU;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) scanf("%d",&need[i]);
memset(first,-1,sizeof(first));
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&x,&y,&z);
AddEdge(x,y,z);
AddEdge(y,x,z);
}
Tarjan(1,0);
for(int i=1;i<=n;++i)
spfa(i,0);
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
if((!bridge[TEs[i][j]])&&(j!=i))
{
Del[TEs[i][j]]=Del[TEs[i][j]^1]=1;
spfa(i,1);
Del[TEs[i][j]]=Del[TEs[i][j]^1]=0;
int tmp=ans2[TEs[i][j]];
for(int k=1;k<=n;++k)
ans2[TEs[i][j]]+=dis[k];
ans2[TEs[i][j]^1]+=(ans2[TEs[i][j]]-tmp);
}
for(int j=0;j<en;++j)
if((!bridge[j])&&(!ontree[i][j]))
ans2[j]+=sumv[i];
}
printf("%d %d\n",ans,*max_element(ans2,ans2+en));
return 0;
}
【spfa】bzoj3921 Mimori与树海的更多相关文章
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 【BZOJ-3627】路径规划 分层图 + Dijkstra + spfa
3627: [JLOI2014]路径规划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 186 Solved: 70[Submit][Status] ...
- POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)
传送门 Til the Cows Come Home Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 46727 Acce ...
- sgu 240 Runaway (spfa)
题意:N点M边的无向图,边上有线性不下降的温度,给固定入口S,有E个出口.逃出去,使最大承受温度最小.输出该温度,若该温度超过H,输出-1. 羞涩的题意 显然N*H的复杂度dp[n][h]表示到达n最 ...
- spfa模板
通过stl的queue实现的spfa(vector实现邻接表存图) 本模板没有考虑存在两点不连通的情况 如果需要判断则需要用到并查集或者遍历整个邻接表 #include<iostream> ...
- SPFA
SPFA算法用来求单源最短路.可以处理任何有解的情况. 先建一个数组\(dist_x = 起点到x的最短路长度\),当\(x=起点\)时为0,当x和起点不通时为INF(本题中为\(2^31-1\)). ...
- BZOJ2763 [JLOI2011]飞行路线(SPFA + DP)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=2763 Description Alice和Bob现在要乘飞机旅行,他们选择了一家 ...
- bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)
数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...
- bzoj 1179[Apio2009]Atm (tarjan+spfa)
题目 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每行一 ...
随机推荐
- Ubuntu下安装LNMP之Mysql的安装及卸载
Mysql的安装过程也可参考:http://blog.csdn.net/qq_20565303/article/details/69813868 Mysql安装包下载地址:https://dev.my ...
- [Book Content]Python进阶
python进阶 原书内容https://github.com/eastlakeside/interpy-zh 通过记录书本目录和大概内容做一个记录,方便以后回顾检索. Chapter Title B ...
- 精通javascript笔记(智能社)——数字时钟
JS代码: <script type="text/javascript"> window.onload=function(){ //小于10的数字补零及数字转字符 ...
- spring的普通类中如何取session和request对像
在使用spring时,经常需要在普通类中获取session,request等对像. 比如一些AOP拦截器类,在有使用struts2时,因为struts2有一个接口使用org.apache.struts ...
- Nginx反向代理丢失cookie的问题
今天在测试环境进行测试时发现有个页面无论如何都进不去了,经过调试发现,JSESSIONID的path和我访问应用的工程不相同!我访问的应用是/xxx/,而JSESSIONID的path是/yyy/,这 ...
- bzoj4430 [Nwerc2015]Guessing Camels赌骆驼
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4430 [题解] 把每只骆驼在第一个人.第二个人.第三个人的位置找出来,然后做三维偏序即可. ...
- 会议中心[APIO2009]
会议中心 思路 这一题的正解是倍增的,但是由于我太蒟蒻了,所以我选了一个不算正解但是有可以拿满分的题目学习 思路和我考场上其实差不多,只是我无法实现.... 下面我先来介绍几个数组的用途 1.s,s数 ...
- linux基础编程 套接字socket 完整的服务器端多线程socket程序【转】
转自:http://blog.csdn.net/ghostyu/article/details/7737203 此段程序来自我的一个项目中,稍微做了些修改,运行稳定,客户端程序比较简单所以未编写,可以 ...
- android ARM 汇编学习—— 在 android 设备上编译c/cpp代码并用objdump/readelf等工具分析
学习 android 逆向分析过程中,需要学习 Arm 指令,不可避免要编写一些 test code 并分析其指令,这是这篇文档的背景. 在目前 android 提供的开发环境里,如果要编写 c / ...
- elasticsearch SpanNearQuery inOrder参数
一直没有注意还有一个inOrder参数: public SpanNearQuery(SpanQuery[] clauses, int slop, boolean inOrder) When inOrd ...