经分析可知:I.操作每个灯可看做一种异或状态 II.每个状态可看做是一些异或状态的异或和,而且每个异或状态只能由它本身释放或放入 III.每一种异或状态只有存在不存在两中可行状态,因此这些灯只有同时处于不存在才可以,而两种异或状态之间没有关系因此可以把这些状态看做一样的,因此counts的是异或状态数。

到这里为止我们可以得到一个简单的转移方程 f[i]=i/n*f[i-1]+(n-i)/i*f[i+1]+1 于是看起来似乎已经到了解决问题的时候,所以我就开始推.......然后就没有然后了,由这个式子出发的扔锅,永远没头.....

.最后知道正解是差分的我大概......我们可以这样想,从每个f[i]出发到达最后他一定是先从自己出发再到每个可能第一次到达i-1,在每个可能第一次到达i-2....而我们发现对于一个i到达i-1的期望次数是一定的因此我们可以从此入手 得到 g[i]=i/n+(n-i)/n(g[i+1]+g[i]+1) 这样我们就能用一个二阶递推来AC了

(*@ο@*) 哇~ 神™差分,让我推一年我也推不出来.......

#include<cstdio>
#include<iostream>
#define MAXN 100100
using namespace std;
typedef long long LL;
const LL P=;
LL jie[MAXN],g[MAXN],f[MAXN],n,k;
int now[MAXN];
inline LL ni(LL x)
{
LL y=P-,ans=;;
while(y)
{
if(y&)ans=ans*x%P;
y>>=;
x=x*x%P;
}
return ans;
}
int main()
{
scanf("%lld%lld",&n,&k);
jie[]=;
for(LL i=;i<=n;i++)
jie[i]=jie[i-]*i%P;
for(LL i=;i<=k;i++)
g[i]=jie[n];
g[]=;
g[n]=jie[n];
for(LL i=n-;i>k;i--)
g[i]=((n-i)*g[i+]%P+n*jie[n]%P)%P*ni(i)%P;
for(int i=;i<=n;i++)
scanf("%d",&now[i]);
LL aim=;
for(int i=n;i>;i--)
if(now[i])
{
aim++;
int j=;
for(;j*j<i;j++)
if(i%j==)
now[j]^=,now[i/j]^=;
if(j*j==i)
now[j]^=;
}
LL ans=;
for(int i=;i<=aim;i++)
ans+=g[i];
ans%=P;
printf("%lld",ans);
return ;
}

[HEOI2017]分手是祝愿 期望概率dp 差分的更多相关文章

  1. BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望

    BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这 ...

  2. HDU 3853 期望概率DP

    期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] ,  右移:[x][y ...

  3. 【BZOJ 3652】大新闻 数位dp+期望概率dp

    并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的 ...

  4. 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基

    大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...

  5. 【NOIP模拟赛】黑红树 期望概率dp

    这是一道比较水的期望概率dp但是考场想歪了.......我们可以发现奇数一定是不能掉下来的,因为若奇数掉下来那么上一次偶数一定不会好好待着,那么我们考虑,一个点掉下来一定是有h/2-1个红(黑),h/ ...

  6. BZOJ1415: [Noi2005]聪聪和可可 最短路 期望概率dp

    首先这道题让我回忆了一下最短路算法,所以我在此做一个总结: 带权: Floyed:O(n3) SPFA:O(n+m),这是平均复杂度实际上为O(玄学) Dijkstra:O(n+2m),堆优化以后 因 ...

  7. 期望概率DP

    期望概率DP 1419: Red is good ​ Description ​ 桌面上有\(R\)张红牌和\(B\)张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 ...

  8. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  9. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

随机推荐

  1. 一笔画问题 南阳acm42(貌似没用到什么算法)

    一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下 ...

  2. 从C到C++ (3)

    从C到C++ (3) 一.    C++中增加了引用 1.引用是给某一个变量起别名.引用的一般格式: 类型 &引用名 = 变量名 定义引用时一定要初始化.在实际应用中,引用一般用作参数传递与返 ...

  3. asp.net 模拟CURL调用微信公共平台API 上传下载多媒体文件接口

    FormItem类 public class FormItem { public string Name { get; set; } public ParamType ParamType { get; ...

  4. golang 小知识点记录

    获取url中的参数及输出到页面的几种方式 func SayHello(w http.ResponseWriter, req *http.Request) { req.Method //获取url的方法 ...

  5. jmeter多用户登录跨线程组操作传值

    项目需求: 需要登录两个用户A.B,用户A操作完后会通知B,然后B再操作,B操作完结束或者再通知A. 实现思路: 1. 设置两个线程组Ⅰ.Ⅱ,组Ⅰ添加cookie管理器,里面添加用户A的操作:组Ⅱ添加 ...

  6. 自动化测试学习之路--java 数组

    数组的定义与为数组元素分配空间和赋值是分开进行的,称为动态初始化. 在数组定义的同时就为数组元素分配空间并赋值,称为静态初始化. 一维数组举例: //动态初始化 int[] intArr; intAr ...

  7. 【page.js】配置及Page函数说明

    页面.js中的Page函数用来注册一个页面,指定页面的初始数据.生命周期回调.事件处理函数等. 语法:Page(Object)参数: Object json对象 Page({ /** * data * ...

  8. 04-Mysql----初识sql语句

    本节课先对mysql的基本语法初体验. 操作文件夹(库) 增 create database db1 charset utf8; 查 # 查看当前创建的数据库 show create database ...

  9. 分布式一致性算法之Paxos原理剖析

    概述 Zookeeper集群中,只有一个节点是leader节点,其它节点都是follower节点(实际上还有observer节点,不参与选举投票,在这里我们先忽略,下同).所有更新操作,必须经过lea ...

  10. linux备忘录-日志档案

    linux的日志档案 linux的日志档案记录系统或程序在运行过程中产生的一些信息,例如事件的记录,错误的记录等等.特别是在发生错误时,我们可以通过日志档案找到错误发生的根源,例如当我们无法启动邮件服 ...